نتایج جستجو برای: k means

تعداد نتایج: 702376  

Journal: :CoRR 2017
Bernd Fritzke

We present a new clustering algorithm called k-means-u* which in many cases is able to significantly improve the clusterings found by k-means++, the current de-facto standard for clustering in Euclidean spaces. First we introduce the k-means-u algorithm which starts from a result of k-means++ and attempts to improve it with a sequence of non-local “jumps” alternated by runs of standard k-means....

2014
Anup Bhattacharya Ragesh Jaiswal Nir Ailon

The k-means++ seeding algorithm is one of the most popular algorithms that is used for finding the initial k centers when using the k-means heuristic. The algorithm is a simple sampling procedure and can be described as follows: Pick the first center randomly from the given points. For i > 1, pick a point to be the i center with probability proportional to the square of the Euclidean distance o...

Journal: :CoRR 2015
A. P. Nirmala R. Sridaran

Even though virtualization provides a lot of advantages in cloud computing, it does not provide effective performance isolation between the virtualization machines. In other words, the performance may get affected due the interferences caused by co-virtual machines. This can be achieved by the proper management of resource allocations between the Virtual Machines running simultaneously. This pa...

پایان نامه :موسسه آموزش عالی غیردولتی و غیرانتفاعی صنعتی فولاد - دانشکده علوم پایه 1392

خوشه بندی تکنیکی از داده¬کاوی است که تعدادی آیتم را می¬گیرد و آنها را براساس ویژگیها¬یشان درون خوشه¬ها قرار می¬دهد. آیتمهای درون هر خوشه بیشترین میزان شباهت را در ویژگی بخصوصی که از پیش مشخص شده است،با هم دارند و آیتمهای خوشه¬های مختلف بیشترین تفاوت را در آن ویژگی، نسبت به هم دارند. خوشه¬بندی انواع مختلفی دارد که k-means یکی از بهترین و ساده¬ترین آنهاست. این خوشه¬بندی به این دلیل که پایه¬ی برخی...

Journal: :CoRR 2017
Anup Bhattacharya Ragesh Jaiswal

In this work, we study the k-means cost function. The (Euclidean) k-means problem can be described as follows: given a dataset X ⊆ R and a positive integer k, find a set of k centers C ⊆ R such that Φ(C,X) def = ∑ x∈X minc∈C ||x− c|| 2 is minimized. Let ∆k(X) def = minC⊆Rd Φ(C,X) denote the cost of the optimal k-means solution. It is simple to observe that for any dataset X, ∆k(X) decreases as ...

2017
Theodore T. Allen Zhenhuan Sui Nathan Parker

2017

This paper reflects the results of an implementation of the K-means algorithm on U.N survey data on people’s priorities, organized by country. The dataset includes 16 features for each country, with each feature corresponding to a different societal issue. Each country has a rating in the range of [0, 1] that indicates how important a particular feature or issue is to that country’s people– the...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید