نتایج جستجو برای: kir channels
تعداد نتایج: 141109 فیلتر نتایج به سال:
Müller cell gliosis, which is characterized by upregulated expression of glial fibrillary acidic protein (GFAP), is a universal response in many retinal pathological conditions. Whether down-regulation of inward rectifying K+ (Kir) channels, which commonly accompanies the enhanced GFAP expression, could contribute to Müller cell gliosis is poorly understood. We investigated changes of Kir curre...
Inwardly rectifying K(+) (Kir) channels are important regulators of resting membrane potential and cell excitability. The activity of Kir channels is critically dependent on the integrity of channel interactions with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we identify and characterize channel-PIP(2) interactions that are conserved among Kir family members. We find basic residues th...
The inwardly rectifying K+ (Kir) current in mammalian retinal pigment epithelial (RPE) cells, which is largely mediated by Kir7.1 channels, is stable in cells dialyzed with MgATP but runs down when intracellular ATP is depleted. A potential mechanism for this rundown is a decrease in phosphatidylinositol 4,5-bisphosphate (PIP2) regeneration by ATP-dependent lipid kinases. Here, we used the whol...
The defining structural feature of inward-rectifier potassium (Kir) channels is the unique Kir cytoplasmic domain. Recently we showed that salt bridges located at the cytoplasmic domain subunit interfaces (CD-Is) of eukaryotic Kir channels control channel gating via stability of a novel inactivated closed state. The cytoplasmic domains of prokaryotic and eukaryotic Kir channels show similar con...
Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K(+) channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current dens...
The modulation of channel activity by direct interaction with membrane lipids is now an emerging theme in ion channel biology. In particular, phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP 2) are known to regulate the activity of most major classes of ion channel, as well as a number of other membrane transport proteins. The regulation of inwardly rectifying (Kir) potassiu...
Dynamic regulation of ion channel interactions with the cytoskeleton mediates aspects of synaptic plasticity, yet mechanisms for this process are largely unknown. Here, we report that two inwardly rectifying K+ channels, Kir 2.1 and 2.3, bind to PSD-95, a cytoskeletal protein of postsynaptic densities that clusters NMDA receptors and voltage-dependent K+ channels. Kir 2.3 colocalizes with PSD-9...
The 9 1 integrin accelerates cell migration through binding of spermidine/spermine acetyltransferase (SSAT) to the 9 cytoplasmic domain. We now show that SSAT enhances 9-mediated migration specifically through catabolism of spermidine and/or spermine. Because spermine and spermidine are effective blockers of K ion efflux through inward-rectifier K (Kir) channels, we examined the involvement of ...
The amino-terminal and carboxy-terminal domains of inwardly rectifying potassium channel (Kir) subunits are both intracellular. A direct physical interaction between these two domains is involved in the response of Kir channels to regulatory factors such as G-proteins, nucleotides and intracellular pH. We have previously mapped the region within the N-terminal domain of Kir6.2 that interacts wi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید