نتایج جستجو برای: l uniform convergence space
تعداد نتایج: 1276913 فیلتر نتایج به سال:
this paper is an investigation of $l$-dual frames with respect to a function-valued inner product, the so called $l$-bracket product on $l^{2}(g)$, where g is a locally compact abelian group with a uniform lattice $l$. we show that several well known theorems for dual frames and dual riesz bases in a hilbert space remain valid for $l$-dual frames and $l$-dual riesz bases in $l^{2}(g)$.
In this paper, we study the concept of statistical convergence on L?fuzzy normed spaces. Then give a useful characterization for statistically convergent sequences. Furthermore, illustrate that our method is more general than usual
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
The main purpose of this paper is to investigate constructively the relationship between proximal convergence, uniform sequential convergence and uniform convergence for sequences of mappings between apartness spaces. It is also shown that if the second space satisfies the Efremovic axiom, then proximal convergence preserves strong continuity. Mathematics Subject Classification: 54E05, 03F60
For any weightable quasi-metric space (X, d) having a maximum with respect to the associated order ≤d, the notion of the quasi-metric of complexity convergence on the the function space (equivalently, the space of sequences) X, is introduced and studied.We observe that its induced quasi-uniformity is finer than the quasi-uniformity of pointwise convergence and weaker than the quasi-uniformity o...
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
Nearness (a fuzzy nearness) is a fuzzy relation that can be used to model various grades of “being close” in a linear space. We study the uniform convergence of a sequence of functions with values in a space equipped with a nearness relation. The uniform convergence for the mappings into a space with a fuzzy nearness is defined and it is shown that a theorem similar to Moore-Osgood theorem for ...
In this paper we give a characterization of pointwise and uniform convergence of sequences of homogeneous polynomials on a Banach space by means of the convergence of their level sets. Results are obtained both in the real and the complex cases, as well as some generalizations to the nonhomogeneous case and to holomorphic functions in the complex case. Kuratowski convergence of closed sets is u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید