نتایج جستجو برای: l_1 biharmonic surface
تعداد نتایج: 636941 فیلتر نتایج به سال:
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...
In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit sphere S ⊂ R under a smallness condition of renormalized total energy. For the class of such solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity of hessian energy, and unique limit at t = ∞. We establish both regularity and uniqueness for Serrin’s (p, q)-sol...
در سال 1964 جیمز در مقاله ای تحت عنوان فضاهای باناخ به طور یکنواخت غیر مربعی، ثابت کرد اگر یک فضای باناخ شامل زیرفضای یکریخت با c_0 (l_1) باشد، آنگاه شامل کپی های تقریباً طولپا از c_0 (l_1) است. ما شکل متمم دار از این نتایج را بیان می کنیم. همچنین نشان می دهیم یک فضای باناخ دوگان که شامل یک زیرفضای یکریخت با l_1 [0,1] (l_? ) است باید شامل کپی های تقریباً طولپا از l_1 [0,1] (l_? ) باشد. همچنین نشا...
We prove an apriori estimate in Morrey spaces for both intrinsic and extrinsic biharmonic maps into spheres. As applications, we prove an energy quantization theorem for biharmonic maps from 4-manifolds into spheres and a partial regularity for stationary intrinsic biharmonic maps into spheres. x
In an arbitrary bounded 2-D domain, a singular perturbation approach is developed to analyze the asymptotic behavior of several biharmonic linear and nonlinear eigenvalue problems for which the solution exhibits a concentration behavior either due to a hole in the domain, or as a result of a nonlinearity that is non-negligible only in some localized region in the domain. The specific form for t...
In this article we deal with the existence questions to the nonlinear biharmonic systems. Using theory of monotone operators, we show the existence of a unique weak solution to the weighted biharmonic systems. We also show the existence of a positive solution to weighted biharmonic systems in the unit ball in Rn , using Leray Schauder fixed point theorem. In this study we allow sign-changing we...
Abstract In this paper we consider the lower order eigenvalues of biharmonic operator on compact Riemannian manifolds with boundary (possibly empty) and prove a type of general inequalities for them. In particular, we study the lower order eigenvalues of biharmonic operator on compact submanifolds of Euclidean spaces, of spheres, and of projective spaces. We obtain some estimates for lower orde...
We investigate biharmonic submanifolds of the product of two space forms. We prove a necessary and sufficient condition for biharmonic submanifolds in these product spaces. Then, we obtain mean curvature estimates for proper-biharmonic submanifold of a product of two unit spheres. We also prove a non-existence result in the case of the product of a sphere and a hyperbolic space.
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید