Let $p$ be an odd prime, $q=p^e$, $e \geq 1$, and $\mathbb{F} = \mathbb{F}_q$ denote the finite field of $q$ elements. $f: \mathbb{F}^2\to \mathbb{F}$ $g: \mathbb{F}^3\to functions, let $P$ $L$ two copies 3-dimensional vector space $\mathbb{F}^3$. Consider a bipartite graph $\Gamma_\mathbb{F} (f, g)$ with vertex partitions edges defined as follows: for every $(p)=(p_1,p_2,p_3)\in P$ $[l]= [l_1,...