نتایج جستجو برای: label embedding

تعداد نتایج: 135700  

Journal: :CoRR 2017
HongYun Cai Vincent Wenchen Zheng Kevin Chen-Chuan Chang

Graph embedding provides an ecient solution for graph analysis by converting the graph into a low-dimensional space which preserves the structure information. In contrast to the graph structure data, the i.i.d. node embeddings can be processed eciently in terms of both time and space. Current semi-supervised graph embedding algorithms assume the labelled nodes are given, which may not be alwa...

2015
Farzaneh Mirzazadeh Martha White András György Dale Schuurmans

We present a general formulation of metric learning for co-embedding, where the goal is to relate objects from different sets. The framework allows metric learning to be applied to a wide range of problems—including link prediction, relation learning, multi-label tagging and ranking—while allowing training to be reformulated as convex optimization. For training we provide a fast iterative algor...

Journal: :transactions on combinatorics 2012
ismail sahul hamid arumugaperumal anitha

let $g=(v‎, ‎e)$ be a graph with $p$ vertices and $q$ edges‎. ‎an emph{acyclic‎ ‎graphoidal cover} of $g$ is a collection $psi$ of paths in $g$‎ ‎which are internally-disjoint and cover each edge of the graph‎ ‎exactly once‎. ‎let $f‎: ‎vrightarrow {1‎, ‎2‎, ‎ldots‎, ‎p}$ be a bijective‎ ‎labeling of the vertices of $g$‎. ‎let $uparrow!g_f$ be the‎ ‎directed graph obtained by orienting the...

Journal: :CoRR 2018
Isabelle Augenstein Sebastian Ruder Anders Søgaard

We combine multi-task learning and semisupervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single an...

2016
Yukun Ma Erik Cambria Sa Gao

Named entity typing is the task of detecting the types of a named entity in context. For instance, given “Eric is giving a presentation”, our goal is to infer that ‘Eric’ is a speaker or a presenter and a person. Existing approaches to named entity typing cannot work with a growing type set and fails to recognize entity mentions of unseen types. In this paper, we present a label embedding metho...

Journal: :bulletin of the iranian mathematical society 2011
a. dolati

it has been proved that sphericity testing for digraphs is an np-complete problem. here, we investigate sphericity of 3-connected single source digraphs. we provide a new combinatorial characterization of sphericity and give a linear time algorithm for sphericity testing. our algorithm tests whether a 3-connected single source digraph with $n$ vertices is spherical in $o(n)$ time.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی 1393

در این پایان نامه روشی برای تطبیق مدل زبانی ارائه شده است. این روش، برمبنای ترکیب الگوریتم کاهش بعد locally linear embedding و مدل زبانی n-gram عمل میکند. الگوریتم locally linear embedding در کاهش ابعاد ساختار داده اصلی را حفظ مینماید. لذا انتظار داریم ساختار کلی ماتریس سند-کلمه در این کاهش بعد دچار خدشه زیاد نگردد. الگوریتم ارائه شده، با استفاده از زبان c++ و بهره گیری از توابع موجود در ابزاره...

Journal: :IEICE Transactions 2015
Koichi Kise Shinichiro Omachi Seiichi Uchida Masakazu Iwamura Marcus Liwicki

This paper reviews several trials of re-designing conventional communication medium, i.e., characters, for enriching their functions by using data-embedding techniques. For example, characters are redesigned to have better machine-readability even under various geometric distortions by embedding a geometric invariant into each character image to represent class label of the character. Another e...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید