نتایج جستجو برای: latent semantic analysis

تعداد نتایج: 2942209  

Journal: :Behavior Research Methods, Instruments, & Computers 1996

Journal: :International Business Research 2011

Journal: :TELKOMNIKA (Telecommunication Computing Electronics and Control) 2018

2011
Dan Oneaţă

Probabilistic Latent Semantic Analysis (pLSA) is a technique from the category of topic models. Its main goal is to model cooccurrence information under a probabilistic framework in order to discover the underlying semantic structure of the data. It was developed in 1999 by Th. Hofmann [7] and it was initially used for text-based applications (such as indexing, retrieval, clustering); however i...

2011
Xi Chen Yanjun Qi Bing Bai Qihang Lin Jaime G. Carbonell

Latent semantic analysis (LSA), as one of the most popular unsupervised dimension reduction tools, has a wide range of applications in text mining and information retrieval. The key idea of LSA is to learn a projection matrix that maps the high dimensional vector space representations of documents to a lower dimensional latent space, i.e. so called latent topic space. In this paper, we propose ...

2011
Fabio A. González Juan C. Caicedo

The main goal of this paper is to explore latent topic analysis (LTA), in the context of quantum information retrieval. LTA is a valuable technique for document analysis and representation, which has been extensively used in information retrieval and machine learning. Different LTA techniques have been proposed, some based on geometrical modeling (such as latent semantic analysis, LSA) and othe...

2016
Danish Contractor Parag Singla Mausam

Community created content (e.g., product descriptions, reviews) typically discusses one entity at a time and it can be hard as well as time consuming for a user to compare two or more entities. In response, we define a novel task of automatically generating entity comparisons from text. Our output is a table that semantically clusters descriptive phrases about entities. Our clustering algorithm...

2005
Florent Monay Pedro Quelhas Daniel Gatica-Perez Jean-Marc Odobez

We propose the use of latent space models applied to local invariant features for object classification. We investigate whether using latent space models enables to learn patterns of visual co-occurrence and if the learned visual models improve performance when less labeled data are available. We present and discuss results that support these hypotheses. Probabilistic Latent Semantic Analysis (...

Journal: :CoRR 2013
Sahin Cem Geyik Ali Dasdan Kuang-chih Lee

In the domain of online advertising, our aim is to serve the best ad to a user who visits a certain webpage, to maximize the chance of a desired action to be performed by this user after seeing the ad. While it is possible to generate a different prediction model for each user to tell if he/she will act on a given ad, the prediction result typically will be quite unreliable with huge variance, ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید