نتایج جستجو برای: liouville fractional derivatives
تعداد نتایج: 167280 فیلتر نتایج به سال:
There are many functions which are continuous everywhere but non-differentiable at someor all points such functions are termed as unreachable functions. Graphs representing suchunreachable functions are called unreachable graphs. For example ECG is such an unreachable graph. Classical calculus fails in their characterization as derivatives do not exist at the unreachable points. Such unreachabl...
Abstract The fractional wave equation is presented as a generalization of the wave equation when arbitrary fractional order derivatives are involved. We have considered variable dielectric environments for the wave propagation phenomena. The Jumarie’s modified Riemann-Liouville derivative has been introduced and the solutions of the fractional Riccati differential equation have been applied to ...
This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.
The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classical theory of linear viscoelasticity, we contrast these two types of fractional derivatives in thei...
We introduce a fractional theory of the calculus of variations for multiple integrals. Our approach uses the recent notions of Riemann–Liouville fractional derivatives and integrals in the sense of Jumarie. The main results provide fractional versions of the theorems of Green and Gauss, fractional Euler–Lagrange equations, and fractional natural boundary conditions. As an application we discuss...
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
1 Professor and author of correspondence, Phone: +91 3222-283084, Fax: +91 3222 255303, Email: [email protected] ABSTRACT A numerical technique for the solution of a class of fractional optimal control problems has been proposed in this paper. The technique can used for problems defined both in terms of Riemann-Liouville and Caputo fractional derivatives. In this technique a Reflection Op...
The paper presents a new fractional integration, which generalizes the Riemann-Liouville and Hadamard fractional integrals into a single form, which when a parameter fixed at different values, produces the above integrals as special cases. Conditions are given for such a generalized fractional integration operator to be bounded in an extended Lebesgue measurable space. Semigroup property for th...
Fractional systems with Riemann-Liouville derivatives are considered. The initial memory value problem is posed and studied. We obtain explicit steering laws with respect to the values of the fractional integrals of the state variables. The Gramian is generalized and steering functions between memory values are characterized.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید