نتایج جستجو برای: lipschitz
تعداد نتایج: 7935 فیلتر نتایج به سال:
(1.1) |f(a)− f(b)| ≤ L |a− b| for every pair of points a, b ∈ A. We also say that a function is Lipschitz if it is L-Lipschitz for some L. The Lipschitz condition as given in (1.1) is a purely metric condition; it makes sense for functions from one metric space to another. In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. In Section 2, we study extensio...
We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...
A direct application of Zorn’s lemma gives that every Lipschitz map f : X ⊂ Qp → Qp has an extension to a Lipschitz map f̃ : Qp → Qp . This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps S ⊂ Rn → R`. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the p-adic ...
In this note we prove that reconstruction from magnitudes of frame coefficients (the so called ”phase retrieval problem”) can be performed using Lipschitz continuous maps. Specifically we show that when the nonlinear analysis map α : H → R is injective, with (α(x))k = |〈x, fk〉| , where {f1, . . . , fm} is a frame for the Hilbert space H, then there exists a left inverse map ω : R → H that is Li...
In this paper we investigate the Lipschitz equivalence of dust-like self-similar sets in Rd. One of the fundamental results by Falconer and Marsh [On the Lipschitz equivalence of Cantor sets, Mathematika, 39 (1992), 223– 233] establishes conditions for Lipschitz equivalence based on the algebraic properties of the contraction ratios of the self-similar sets. In this paper we extend the study by...
We introduce Lipschitz continuity of set-valued maps with respect to a given set difference. The existence of Lipschitz selections that pass through any point of the graph of the map and inherit its Lipschitz constant is studied. We show that the Lipschitz property of the set-valued map with respect to the Demyanov difference with a given constant is characterized by the same property of its ge...
We characterize the variation functions of computable Lipschitz functions. We show that a real z is computably random if and only if every computable Lipschitz function is differentiable at z. Furthermore, a real z is Schnorr random if and only if every Lipschitz function with L1-computable derivative is differentiable at z. For the implications from left to right we rely on literature results....
Let (X, d) be a quasi-convex, complete and separable metric space with reference probability measure m. We prove that the set of of real valued Lipschitz function with non zero point-wise Lipschitz constant m-almost everywhere is residual, and hence dense, in the Banach space of Lipschitz and bounded functions. The result is the metric analogous of a result proved for real valued Lipschitz maps...
Strong convergence results on tamed Euler schemes, which approximate stochastic differential equations with superlinearly growing drift coefficients that are locally one-sided Lipschitz continuous, are presented in this article. The diffusion coefficients are assumed to be locally Lipschitz continuous and have at most linear growth. Furthermore, the classical rate of convergence, i.e. one–half,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید