نتایج جستجو برای: locally convex space
تعداد نتایج: 610762 فیلتر نتایج به سال:
the notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $cat(0)$ space, where the curvature is bounded from above by zero. in fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. in this paper, w...
In the Hyperbolic space Hn (n ≥ 3) there are uncountably many topological types of convex hypersurfaces. When is a locally convex hypersurface in Hn globally convex, that is, when does it bound a convex set? We prove that any locally convex proper embedding of an (n− 1)-dimensional connected manifold is the boundary of a convex set whenever the complement of (n−1)-flats of the resulting hypersu...
A generalization of Phelps’ lemma to locally convex spaces is proven, applying its well-known Banach space version. We show the equivalence of this theorem, Ekeland’s principle and Danes̆’ drop theorem in locally convex spaces to their Banach space counterparts and to a Pareto efficiency theorem due to Isac. This solves a problem, concerning the drop theorem, proposed by G. Isac in 1997. We show...
In this article, we introduce a new class of ideal convergent sequence spaces using an infinite matrix, Musielak-Orlicz function and a new generalized difference matrix in locally convex spaces. We investigate some linear topological structures and algebraic properties of these spaces. We also give some relations related to these sequence spaces.
The purpose of this paper is to characterize the Banach spaces and the locally convex spaces E for which bounded additive measures or bounded σadditive measures with values in L(E, F ), the space of continuous linear maps from E into F , are of bounded semi-variation for any Banach space or locally convex space F . This paper gives an answer to a problem posed by D.H. Tucker in [6].
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید