نتایج جستجو برای: locally lipschitz mapping
تعداد نتایج: 283166 فیلتر نتایج به سال:
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
In this paper we consider the computability of the solution of the initialvalue problem for differential inclusions with semicontinuous right-hand side. We present algorithms for the computation of the solution using the “ten thousand monkeys” approach, in which we generate all possible solution tubes, and then check which are valid. In this way, we show that the solution of an upper-semicontin...
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
We prove that certain Lipschitz properties of the inverse F-1 of a set-valued map F are inherited by the map (f+F)~x when / has vanishing strict derivative. In this paper, we present an inverse mapping theorem for set-valued maps F acting from a complete metric space I toa linear space Y with a (translation) invariant metric. We prove that, for any function f: X -> Y with "vanishing strict deri...
In this paper, we prove the existence theorem for a mapping defined by T = T1 + T2 when T1 is a μ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping, we have a mapping T is Lipschitz continuous but not strongly monotone mapping. This work is extend and improve the result of N. Petrot [17]. Mathematics Subject Classification: 46C05, 47D03, 47H09, 47H10...
and Applied Analysis 3 Definition 2.2 see 16 . Let ψ : R → R be a locally Lipschitz function, then ψ◦ u;v denotes Clarke’s generalized directional derivative of ψ at u ∈ R in the direction v and is defined as ψ◦ u;v lim sup y→u t→ 0 ψ ( y tv ) − ψ(y) t . 2.4 Clarke’s generalized gradient of ψ at u is denoted by ∂ψ u and is defined as ∂ψ u { ξ ∈ R | ψ◦ u;v ≥ 〈ξ, v〉, ∀v ∈ Rn}. 2.5 Let f : R → R b...
There exists a calculus for general nondifferentiable functions that englobes a large part of the familiar subdifferential calculus for convex nondifferentiable functions [1]. This development started with F.H. Clarke, who introduced a generalized gradient for functions that are locally Lipschitz, but (possibly) nondifferentiable. Generalized gradients turn out to be the subdifferentials, in th...
where φ is the angle between the unit vortex line tangent vectors ξ(x−y, t) and ξ(x, t). Some degree of smoothness of the bundle of vortex lines near a potential singularity may result in averting blowup [3]. For simplicity, we’ll discuss Lipschitz continuous cases, although Hölder continuous cases may be analyzed in a similar fashion. We distinguish between the sine-Lipschitz case (i.e. sinφ i...
we introduce a new concept of general $g$-$eta$-monotone operator generalizing the general $(h,eta)$-monotone operator cite{arvar2, arvar1}, general $h-$ monotone operator cite{xiahuang} in banach spaces, and also generalizing $g$-$eta$-monotone operator cite{zhang}, $(a, eta)$-monotone operator cite{verma2}, $a$-monotone operator cite{verma0}, $(h, eta)$-monotone operator cite{fanghuang}...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید