نتایج جستجو برای: minimal polynomial

تعداد نتایج: 244735  

1997
Jan TREUR J. Treur

An extension L/K of skew fields is called a leftpolynomialextension with polynomial generator 0 if it has a left basis of the form 1, i3, ti’, , Bnm’ for some n. This notion of left polynomial extension is a generalisation of the notion of pseudo-linear extension, known from literature. In this paper we show that any polynomial which is the minimal polynomial over K of some element in an extens...

2002
Thanh Minh Hoang Thomas Thierauf

2009
P. V. Danchev

Throughout the text, let R be a commutative ring with identity (often called a commutative unital ring) and with multiplicative group of units R∗. Likewise, let f(x) = a0x +a1x n−1+ · · ·+an−1x+an be a polynomial of the variable x over R such that a0 ∈ R∗. Traditionally, R[x] is the ring of all polynomials of x over R; thereby f(x) ∈ R[x]. For an arbitrary but fixed element α, suppose f(x) is t...

2004
Jean-Louis VERGER-GAUGRY

We prove that for all algebraic number β > 1 the strings of zeros in the Rényi βexpansion dβ(1) of 1 exhibit a lacunarity bounded above by log(s(Pβ))/ log(β), where s(Pβ) is the size of the minimal polynomial of β. The conjecture about the specification of the β-shift, equivalently the uniform discreteness of the sets Zβ of β-integers, for β a Perron number is discussed. We propose a classifica...

2009
KEITH CONRAD

has some ei greater than 1. If every ei equals 1, we say p is unramified in K. Example 1.1. In Z[i], the only prime which ramifies is 2: (2) = (1 + i)2. Example 1.2. Let K = Q(α) where α is a root of f(X) = T 3 − 9T − 6. Then 6 = α3 − 9α = α(α− 3)(α+ 3). For m ∈ Z, α+m has minimal polynomial f(T −m) in Q[T ], so NK/Q(α+m) = −f(−m) = m3 − 9m+ 6 and the principal ideal (α−m) has norm N(α−m) = |m ...

Journal: :CoRR 2006
Jean-Guillaume Dumas

This note presents absolute bounds on the size of the coefficients of the characteristic and minimal polynomials depending on the size of the coefficients of the associated matrix. Moreover, we present algorithms to compute more precise inputdependant bounds on these coefficients. Such bounds are e.g. useful to perform deterministic chinese remaindering of the characteristic or minimal polynomi...

2001
Thanh Minh Hoang Thomas Thierauf

2002
Guozhen Xiao Shimin Wei

We introduce a fast algorithm for determining the linear complexity and the minimal polynomial of a sequence with period p over GF(q) , where p is an odd prime, q is a prime and a primitive root modulo p; and its two generalized algorithms. One is the algorithm for determining the linear complexity and the minimal polynomial of a sequence with period pq over GF(q), the other is the algorithm fo...

Journal: :The American Mathematical Monthly 2013
Alexander P. Campbell Daniel Daners

The resolvent (λI − A)−1 of a matrix A is naturally an analytic function of λ ∈ C, and the eigenvalues are isolated singularities. We compute the Laurent expansion of the resolvent about the eigenvalues of A. Using the Laurent expansion, we prove the Jordan decomposition theorem, prove the Cayley-Hamilton theorem, and determine the minimal polynomial of A. The proofs do not make use of determin...

2016
V. Bernik

Let φ : R → R be a continuously differentiable function on an interval J ⊂ R and let α = (α1, α2) be a point with algebraically conjugate coordinates such that the minimal polynomial P of α1, α2 is of degree ≤ n and height ≤ Q. Denote by Mn φ (Q, γ, J) the set of such points α such that |φ(α1)− α2| ≤ c1Q −γ . We show that for a real 0 < γ < 1 and any sufficiently large Q there exist positive va...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید