This article describes a new proof of the equality condition for the Brunn-Minkowski inequality. The Brunn-Minkowski Theorem asserts that, for compact convex sets K,L ⊆ Rn, the n-th root of the Euclidean volume Vn is concave with respect to Minkowski combinations; that is, for λ ∈ [0, 1], Vn((1− λ)K + λL) ≥ (1− λ)Vn(K) + λVn(L). The equality condition asserts that if K and L both have positive ...