نتایج جستجو برای: module connes amenability
تعداد نتایج: 68431 فیلتر نتایج به سال:
We investigate the notion of Connes-amenability, introduced by Runde in [14], for bidual algebras and weighted semigroup algebras. We provide some simplifications to the notion of a σWC-virtual diagonal, as introduced in [10], especially in the case of the bidual of an Arens regular Banach algebra. We apply these results to discrete, weighted, weakly cancellative semigroup algebras, showing tha...
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, L (G), and the Fourier algebra, A(G), of a locally compact group, G. Barry Johnson introduced the important concept of amenability for Banach algebras in [20], where he proved, among many other things, that a group algebra L1(G) is amenable precisely when the locally ...
Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...
Let A be a dual Banach algebra with predual A∗ and consider the following assertions: (A) A is Connes-amenable; (B) A has a normal, virtual diagonal; A∗ is an injective A-bimodule. For general A, all that is known is that (B) implies (A) whereas, for von Neumann algebras, (A), (B), and (C) are equivalent. We show that (C) always implies (B) whereas the converse is false. Furthermore, we investi...
let $s$ be an inverse semigroup and let $e$ be its subsemigroup of idempotents. in this paper we define the $n$-th module cohomology group of banach algebras and show that the first module cohomology group $hh^1_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is zero, for every odd $ninmathbb{n}$. next, for a clifford semigroup $s$ we show that $hh^2_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is a banach space,...
let and be banach algebras, , and . we define an -product on which is a strongly splitting extension of by . we show that these products form a large class of banach algebras which contains all module extensions and triangular banach algebras. then we consider spectrum, arens regularity, amenability and weak amenability of these products.
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید