نتایج جستجو برای: msra
تعداد نتایج: 346 فیلتر نتایج به سال:
Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 ...
Msrs (methionine sulfoxide reductases), MsrA and MsrB, are repair enzymes that reduce methionine sulfoxide residues in oxidatively damaged proteins to methionine residues in a stereospecific manner. These enzymes protect cells from oxidative stress and have been implicated in delaying the aging process and progression of neurodegenerative diseases. In recent years, significant efforts have been...
Methionine sulfoxide reductase A (MsrA) catalyzes the reduction of methionine sulfoxide to methionine and is specific for the S epimer of methionine sulfoxide. The enzyme participates in defense against oxidative stresses by reducing methionine sulfoxide residues in proteins back to methionine. Because oxidation of methionine residues is reversible, this covalent modification could also functio...
Inducible nitric oxide synthase (iNOS) plays an important role in host defense. Macrophages expressing iNOS release the reactive nitrogen intermediates (RNI) nitrite and S-nitrosoglutathione (GSNO), which are bactericidal in vitro at a pH characteristic of the phagosome of activated macrophages. We sought to characterize the active intrabacterial forms of these RNI and their molecular targets. ...
Previously, we have showed that overexpression of methionine-oxidized α-synuclein in methionine sulfoxide reductase A (MsrA) null mutant yeast cells inhibits α-synuclein phosphorylation and increases protein fibrillation. The current studies show that ablation of mouse MsrA gene caused enhanced methionine oxidation of α-synuclein while reducing its own phophorylation levels, especially in the h...
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substr...
Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA ...
Oxidation of methionine residues to methionine sulfoxide can lead to inactivation of proteins. Methionine sulfoxide reductase (MsrA) has been known for a long time, and its repairing function well characterized. Here we identify a new methionine sulfoxide reductase, which we referred to as MsrB, the gene of which is present in genomes of eubacteria, archaebacteria, and eucaryotes. The msrA and ...
Mammals contain two methionine sulfoxide (MetO) reductases, MsrA and MsrB, that catalyze the thioredoxin-dependent reduction of the S-MetO and R-MetO derivatives, respectively, to methionine. The major mammalian MsrB is a selenoprotein (except in the heart). Here, we show that there is a loss of MsrB activity in the MsrA-/- mouse that correlates with parallel losses in the levels of MsrB mRNA a...
1 Database Introduction We present empirical evaluation and analysis of the proposed Bayesian based methods on the MSRA salient object database [1] with the labeled ground truth [2]. The MSRA data set includes 5000 images and the salient objects of 10000 images are manually segmented by [2] with pixel-wise accuracy. In the section IV, we show some details of the database and we evaluate our alg...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید