نتایج جستجو برای: multi objective optimization moo

تعداد نتایج: 1244795  

Journal: :JCS 2017
Lauro Cássio Martins de Paula Anderson da Silva Soares Telma Woerle de Lima Soares Anselmo E. de Oliveira Clarimar José Coelho

Corresponding Author: Lauro Cassio Martins de Paula Institute of Informatics, Federal University of Goiás, Brazil Email: [email protected] Abstract: The development of efficient algorithms for variable selection becomes important to deal with large and complex datasets. Most works in quantitative chemical analysis have used Genetic Algorithms (GAs) as a reference method to select variabl...

2010
Taufik Abrão Leonardo Dagui de Oliveira Bruno Augusto Angélico Paul Jean Etienne Jeszensky

In this chapter, a heuristic perspective for the multiuser detection problem in the uplink of direct sequence code division multiple access (DS-CDMA) systems is discussed. In particular, the particle swarm optimization multiuser detector (PSO-MuD) is analyzed regarding several figures of merit, such as symbol error rate, near-far and channel error estimation robustness, and computational comple...

2011
Eelco den Heijer A. E. Eiben

In this paper we investigate the applicability of Multi-Objective Optimization (MOO) in Evolutionary Art. We evolve images using an unsupervised evolutionary algorithm and we use two aesthetic measures as fitness functions concurrently. We use three different pairs from a set of three aesthetic measures and we compare the output of each pair to the output of other pairs, and to the output of ex...

2004
Jingzhou Yang R. Timothy Marler HyungJoo Kim Jasbir S. Arora Karim Abdel-Malek

The demand for realistic autonomous virtual humans is increasing, with potential application to prototype design and analysis for a reduction in design cycle time and cost. In addition, virtual humans that function independently, without input from a user or a database of animations, provide a convenient tool for biomechanical studies. However, development of such avatars is limited. In this pa...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده برق و کامپیوتر 1390

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

2007
Ching-Shih Tsou Shih-Chia Chang

Biology inspired algorithms have been gaining popularity in recent decades and beyond. These methods are based on biological metaphor such as Darwinian evolution and swarm intelligence. One of the most recent algorithms in this category is the Particle Swarm Optimization (PSO). PSO is a population-based approach using a set of candidate solutions, called particles, which move within the search ...

Hossein Naseri Keikhosrow Firoozbakhsh Rouhollah Hosseini

Because the underlying physiology of pathological tremor in a Parkinson's patient is not well understood, the existing physical and drug therapies have not been successful in tremor treatment. Different mathematical modeling of such vibration has been introduced to investigate the problem and reduce the existing vibration. Most of the models have represented the induced vibration as a sinusoida...

1999
Nicole Drechsler Rolf Drechsler Bernd Becker

Many optimization problems consist of several mutually dependent subproblems, where the resulting solutions must satisfy all requirements. We propose a new model for Multi-Objective Optimization (MOO) in Evolutionary Algorithms (EAs). The search space is partitioned into so-called Satissability Classes (SC), where each region represents the quality of the optimization criteria. Applying the SCs...

Journal: :Inf. Sci. 2007
Praveen Kumar Tripathi Sanghamitra Bandyopadhyay Sankar K. Pal

In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization (MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This adaptiveness helps the algorithm to explore the s...

2001
Joshua D. Knowles Richard A. Watson David W. Corne

One common characterization of how simple hill climbing optimization methods can fail is that they become trapped in local op tima a state where no small modi cation of the current best solution will produce a solution that is better This measure of better depends on the performance of the solution with respect to the single objective be ing optimized In contrast multi objective optimization MO...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید