نتایج جستجو برای: n abelian groups
تعداد نتایج: 1595211 فیلتر نتایج به سال:
suppose $n$ is a fixed positive integer. we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$, associated to the non-abelian subgroup $h$ of group $g$. the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$. moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...
Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...
let $g$ be a non-abelian group. the non-commuting graph $gamma_g$ of $g$ is defined as the graph whose vertex set is the non-central elements of $g$ and two vertices are joined if and only if they do not commute.in this paper we study some properties of $gamma_g$ and introduce $n$-regular $ac$-groups. also we then obtain a formula for szeged index of $gamma_g$ in terms of $n$, $|z(g)|$ and $|g|...
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
1 Multiply transitive groups Theorem 1.1. Let Ω be a finite set and G ≤ Sym(Ω) be 2–transitive. Let N E G be a minimal normal subgroup. Then one of the following holds: (a) N is regular and elementary abelian. (b) N is primitive, simple and not abelian. Proof. First we show that N is unique. Suppose that M is another minimal normal subgroup of G, so N ∩M = {e} and therefore [N,M ] = {e}. Since ...
The following problem has been known since the 80's. Let $\Gamma$ be an Abelian group of order $m$ (denoted $|\Gamma|=m$), and let $t$ $m_i$, $1 \leq i t$, positive integers such that $\sum_{i=1}^t m_i=m-1$. Determine when $\Gamma^*=\Gamma\setminus\{0\}$, set non-zero elements $\Gamma$, can partitioned into disjoint subsets $S_i$, $|S_i|=m_i$ $\sum_{s\in S_i}s=0$ for every $i$, t$. It is easy t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید