نتایج جستجو برای: n hypermodules
تعداد نتایج: 976497 فیلتر نتایج به سال:
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
MNDO semi-empirical SCF MO calculations are used to study the pyramidal nitrogen atom inversion and configurational equilibria in the title compounds.
let $r$ be a ring, and let $n, d$ be non-negative integers. a right $r$-module $m$ is called $(n, d)$-projective if $ext^{d+1}_r(m, a)=0$ for every $n$-copresented right $r$-module $a$. $r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $r$-module is $(n, d)$-projective. $r$ ...
mndo semi-empirical scf mo calculations are used to study the pyramidal nitrogen atom inversion and configurational equilibria in the title compounds.
In this article we introduce the notion of n-capable groups. It is shown that every group G admits a uniquely determined subgroup (〖Z^n)〗^* (G) which is a characteristic subgroup and lies in the n-centre subgroup of the group G. This is the smallest subgroup of G whose factor group is n-capable. Moreover, some properties of n-central extension will be studied.
Hyperstructure theory was born in 1934 when Marty [19] defined hypergroups as a generalization of groups. Let H be a non-empty set and let ℘∗(H) be the set of all non-empty subsets of H. A hyperoperation on H is a map ◦ : H ×H −→ ℘∗(H) and the couple (H, ◦) is called a hypergroupoid. If A and B are non-empty subsets of H, then we denote A◦B = ∪ a∈A, b∈B a◦b, x◦A = {x}◦A and A◦x = A◦{x}. Under c...
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید