نتایج جستجو برای: non uniformly hyperbolic
تعداد نتایج: 1366031 فیلتر نتایج به سال:
A. In this work we exhibit a new criteria for ergodicity of diffeomorphisms involving conditions on Lyapunov exponents and general position of some invariant manifolds. On one hand we derive uniqueness of SRB-measures for transitive surface diffeomorphisms. On the other hand, using recent results on the existence of blenders we give a positive answer, in the C topology, to a conjecture o...
In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to Hölder continuous potentials.
We prove large deviation principles for ergodic averages of dynamical systems admitting Markov tower extensions with exponential return times. Our main technical result from which a number of limit theorems are derived is the analyticity of logarithmic moment generating functions. Among the classes of dynamical systems to which our results apply are piecewise hyperbolic diffeomorphisms, dispers...
We prove that, under a mild condition on the hyperbolicity of its periodic points, a map g which is topologically conjugated to a hyperbolic map (respectively, an expanding map) is also a hyperbolic map (respectively, an expanding map). In particular, this result gives a partial positive answer for a question done by A. Katok, in a related context.
For a class of one-dimensional holomorphic maps f of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of f . This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.
We present some results and open problems about stable ergodicity of partially hyperbolic diffeomorphisms with nonzero Lyapunov exponents. The main tool is local ergodicity theory for non-uniformly hyperbolic systems. Dedicated to the great dynamicists David Ruelle and Yakov Sinai on their 65th birthdays
We give a new proof of the fact that the eigenvalues at correspondig periodic orbits form a complete set of invariants for the smooth conjugacy of low dimensional Anosov systems. We also show that, if a homeomorphism conjugating two smooth low dimensional Anosov systems is absolutely continuous , then it is as smooth as the maps. We furthermore prove generalizations of thse facts for non-unifor...
We present a method to construct equilibrium states via induction. This method can be used for some non-uniformly hyperbolic dynamical systems and for non-Hölder continuous potentials. It allows to prove the occurrence of phase transition.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید