نتایج جستجو برای: perron frobeniustheory

تعداد نتایج: 1460  

1994
Kunihiko Kaneko

Fluctuations of the mean field of a globally coupled dynamical systems are discussed. The origin of hidden coherence is related with the instability of the fixed point solution of the self-consistent Perron-Frobenius equation. Collective dynamics in globally coupled tent maps are re-examined, both with the help of direct simulation and the Perron-Frobenius equation. Collective chaos in a single...

2005
Jiri Rohn

As is well known, an irreducible nonnegative matrix possesses a uniquely determined Perron vector. As the main result of this paper we give a description of the set of Perron vectors of all the matrices contained in an irreducible nonnegative interval matrix A. This result is then applied to show that there exists a subset A∗ of A parameterized by n parameters (instead of n2 ones in the descrip...

2005
SIEGFRIED M. RUMP

The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we introduce the sign-complex spectral radius. Agai...

2009
Abed Elhashash Uriel G. Rothblum Daniel B. Szyld ABED ELHASHASH URIEL G. ROTHBLUM DANIEL B. SZYLD

A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...

Journal: :Fund og Forskning i Det Kongelige Biblioteks Samlinger 1972

2014
FRANK CALEGARI ZILI HUANG

We count various classes of algebraic integers of fixed degree by their largest absolute value. The classes of integers considered include all algebraic integers, Perron numbers, totally real integers, and totally complex integers. We give qualitative and quantitative results concerning the distribution of Perron numbers, answering in part a question of W. Thurston [Thu].

2007
V. Loreto

We discuss the characterization of chaotic behaviours in random maps both in terms of the Lyapunov exponent and of the spectral properties of the Perron-Frobenius operator. In particular, we study a logistic map where the control parameter is extracted at random at each time step by considering nite dimensional approximation of the Perron-Frobenius operator.

Journal: :Bulletin of the American Mathematical Society 1942

Journal: :Discrete & Computational Geometry 2010
Richard W. Kenyon Boris Solomyak

We consider self-affine tilings in R with expansion matrix φ and address the question which matrices φ can arise this way. In one dimension, λ is an expansion factor of a self-affine tiling if and only if |λ| is a Perron number, by a result of Lind. In two dimensions, when φ is a similarity, we can speak of a complex expansion factor, and there is an analogous necessary condition, due to Thurst...

2009
ABED ELHASHASH URIEL G. ROTHBLUM DANIEL B. SZYLD

A matrix is said to have the Perron-Frobenius property (strong Perron-Frobenius property) if its spectral radius is an eigenvalue (a simple positive and strictly dominant eigenvalue) with a corresponding semipositive (positive) eigenvector. It is known that a matrix A with the Perron-Frobenius property can always be the limit of a sequence of matrices A(ε) with the strong Perron-Frobenius prope...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید