Let Ln be the n-dimensional second order cone. A linear map from Rm to Rn is called positive if the image of Lm under this map is contained in Ln. For any pair (n,m) of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality (LMI) that describes this cone. Namely, we show that its dual cone, the cone of Lorentz-Lorentz separable elements, is a section o...