نتایج جستجو برای: primal dual problems
تعداد نتایج: 732141 فیلتر نتایج به سال:
We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual in...
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to bot...
In this paper, we consider a general primal-dual nonlinear rescaling (PDNR) method for convex optimization with inequality constraints. We prove the global convergence of the PDNR method and estimate the error bounds for the primal and dual sequences. In particular, we prove that, under the standard second-order optimality conditions, the error bounds for the primal and dual sequences converge ...
When writing a constraint program, we have to choose which variables should be the decision variables, and how to represent the constraints on these variables. In many cases, there is considerable choice for the decision variables. Consider, for example, permutation problems in which we have as many values as variables, and each variable takes an unique value. In such problems, we can choose be...
In this paper, we study methods for generating approximate primal solutions as a by-product of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as ...
The primal–dual method is a powerful algorithmic technique that has proved to be extremely useful for a wide variety of problems in the area of approximation algorithms for NP-hard problems. The method has its origins in the realm of exact algorithms, e.g., for matching and network flow. In the area of approximation algorithms, the primal–dual method has emerged as an important unifying design ...
By using the canonical dual transformation developed recently, we derive a pair of canonical dual problems for 0-1 quadratic programming problems in both minimization and maximization form. Regardless convexity, when the canonical duals are solvable, no duality gap exists between the primal and corresponding dual problems. Both global and local optimality conditions are given. An algorithm is p...
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these Primal–Dual splitting methods....
Iterative substructuring methods with Lagrange multipliers for the elliptic system of linear elasticity are considered. The algorithms belong to the family of dual-primal FETI methods which was introduced for linear elasticity problems in the plane by Farhat et al. [2001] and then extended to three dimensional elasticity problems by Farhat et al. [2000]. In dual-primal FETI methods, some contin...
Motivated by various applications to computer vision, we consider an integer convex optimization problem which is the dual of the convex cost network flow problem. In this paper, we first propose a new primal algorithm for computing an optimal solution of the problem. Our primal algorithm iteratively updates primal variables by solving associated minimum cut problems. The main contribution in t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید