نتایج جستجو برای: principal ideal multiplication module
تعداد نتایج: 297695 فیلتر نتایج به سال:
Let R be a (nonzero commutative unital) ring. If I and J are ideals of R such that R/I ⊕R/J is a cyclic R-module, then I + J = R. The rings R such that R/I ⊕R/J is a cyclic R-module for all distinct nonzero proper ideals I and J of R are the following three types of principal ideal rings: fields, rings isomorphic to K ×L for the fields K and L, and special principal ideal rings (R,M) such thatM...
Primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. In fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. In this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...
A module is called uniseriat if it has a unique composition series of finite length. A ring (always with 1) is called serial if its right and left free modules are direct sums of uniserial modules. Nakayama, who called these rings generalized uniserial rings, proved [21, Theorem 171 that every finitely generated module over a serial ring is a direct sum of uniserial modules. In section one we g...
let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where $mathbb{p}(r)$ is...
Let $R$ be a commutative ring with identity and $M$ be an unitary $R$-module. The intersection graph of an $R$-module $M$, denoted by $Gamma(M)$, is a simple graph whose vertices are all non-trivial submodules of $M$ and two distinct vertices $N_1$ and $N_2$ are adjacent if and only if $N_1cap N_2neq 0$. In this article, we investigate the concept of a planar intersection graph and maximal subm...
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
Let R be a commutative ring with unity. And let E unitary R-module. This paper introduces the notion of 2-prime submodules as generalized concept ideal, where proper submodule H module F over is said to if , for r and x implies that or . we prove many properties this kind submodules, then only [N ] E, R. Also, non-zero multiplication module, [K: F] [H: every k such K. Furthermore, will study ba...
let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n 2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید