نتایج جستجو برای: quasi unmixed ring
تعداد نتایج: 206046 فیلتر نتایج به سال:
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
In this paper, we introduce the concept of interval valued (α, β)-fuzzy subnear-rings and ideal of near-rings, where α, β any two of the {∈, q,∈ ∨q,∈ ∧q} with α 6=∈ ∧q, by using belongs to relation ∈ and quasi-coincidence with relation q between interval valued fuzzy points and interval valued fuzzy sets. We also discussed some characterizations of interval valued (α,∈ ∨q)-fuzzy ideals(subnear-...
We mainly investigate the structures of skew cyclic and skew quasicyclic codes of arbitrary length over Galois rings. Similar to [5], our results show that the skew cyclic codes are equivalent to either cyclic and quasi-cyclic codes over Galois rings. Moreover, we give a necessary and sufficient condition for skew cyclic codes over Galois rings to be free. A sufficient condition for 1-generator...
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
A ring R is called a left APP-ring if the left annihilator lR(Ra) is right s-unital as an ideal of R for any element a ∈ R. We consider left APP-property of the skew formal power series ring R[[x;α]] where α is a ring automorphism of R. It is shown that if R is a ring satisfying descending chain condition on right annihilators then R[[x;α]] is left APP if and only if for any sequence (b0, b1, ....
The construction of the Bézout matrix in the hybrid resultant formulation involves theories from algebraic geometry. The underlying theory on toric varieties has very nice properties such as the properties of fan (or cones), homogeneous coordinate ring, normality, and Zariski closure are related to the structure of the lattice polytopes in R. This paper presents the application of these propert...
It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identity (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید