نتایج جستجو برای: random survival forest model

تعداد نتایج: 2664866  

Journal: :Transportation Research Record 2022

Bridge deck deterioration modeling is critical to infrastructure management. Deterioration traditionally done using deterministic models, stochastic and recently basic machine learning methods. The advanced learning-based survival such as random forest, have not been adapted for use in This paper introduces forest models bridge compare their performance with a commonly used traditional model, t...

Journal: :The Journal of clinical endocrinology and metabolism 2014
Mousumi Banerjee Daniel G Muenz Joanne T Chang Maria Papaleontiou Megan R Haymart

BACKGROUND Death is uncommon in thyroid cancer patients, and the factors important in predicting survival remain inadequately studied. The objective of this study was to assess prognostic effects of patient, tumor, and treatment factors and to determine prognostic groups for thyroid cancer survival. METHODS Using data from the Surveillance, Epidemiology, and End Results Program (SEER), we eva...

2013
Denis Arnold Petra Wagner R. Harald Baayen

The perception of prosodic prominence is influenced by different sources like different acoustic cues, linguistic expectations and context. We use a generalized additive model and a random forest to model the perceived prominence on a corpus of spoken German. Both models are able to explain over 80% of the variance. While the random forests give us some insights on the relative importance of th...

Journal: :CoRR 2016
Rajmonda S. Caceres Leah Weiner Matthew C. Schmidt Benjamin A. Miller William M. Campbell

Graphs are powerful abstractions for capturing complex relationships in diverse application settings. An active area of research focuses on theoretical models that define the generative mechanism of a graph. Yet given the complexity and inherent noise in real datasets, it is still very challenging to identify the best model for a given observed graph. We discuss a framework for graph model sele...

2017
Davoud Adham Nategh Abbasgholizadeh Malek Abazari

Background: Gastric cancer is the fifth most common cancer and the third top cause of cancer related death with about 1 million new cases and 700,000 deaths in 2012. The aim of this investigation was to identify important factors for outcome using a random survival forest (RSF) approach. Materials and Methods: Data were collected from 128 gastric cancer patients through a historical cohort stud...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم کشاورزی و منابع طبیعی ساری - دانشکده کشاورزی 1393

چکیده هدف این تحقیق مقایسه سه روش یادگیری ماشین random forest، boosting و support vector machine در ارزیابی ژنومی و معرفی روش random forest به عنوان یک روش توانمند برای استنباط(پیش¬بینی) ژنوتیپ بود. نتایج برتری روش boosting بر دو روش دیگر را در غالب سناریوهای بررسی شده نشان داد، اگرچه تفاوتها فقط در برخی سناریوها معنی¬دار بود (05/0>p). همچنین علی¬رقم برتری روش boosting بر دو روش دیگر، میزان زم...

ژورنال: :جغرافیا و توسعه 0
عطااله شیرزادی کریم سلیمانی محمود حبیب نژاد روشن بها عطااله کاویان کامران چپی

افزایش صحت و اعتماد و در نتیجه کاهش عدم قطعیت نقشه­های پیش­بینی مکانی مخاطرات زمینی از جمله زمین لغزش­ها یکی از چالش­های پیش رو در این گونه مطالعات می­باشد. هدف این پژوهش ارائه یک مدل ترکیبی جدید داده ­کاوی الگوریتم- مبنا به نام random subspace-random forest (rs-rf)،برای افزایش میزان صحت پیش­بینی مناطق حساس به وقوع زمین لغزش­های سطحی اطراف شهر بیجار می­باشد. در ابتدا، نوزده عامل مؤثر بر وقوع زم...

Journal: :Global journal of health science 2016
Mozhgan Safe Hossein Mahjub Javad Faradmal

BACKGROUND Breast cancer is the main cause of women cancer mortality. Therefore, precise prediction of patients' risk level is the major concern in therapeutic strategies. Although statistical learning algorithms are high quality risk prediction methods, but usually their better prediction quality leads to more loss of interpretability. Therefore, the aim of this study is to compare 'Model-Base...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید