نتایج جستجو برای: roman 2 domination
تعداد نتایج: 2543014 فیلتر نتایج به سال:
Let D be a finite and simple digraph with vertex set V (D). A signed total Roman k-dominating function (STRkDF) on D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−(v) f(x) ≥ k for each v ∈ V (D), where N−(v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight o...
Let D be a finite and simple digraph with vertex set V (D) and arc set A(D). A signed Roman dominating function (SRDF) on the digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), where N −[v] consists of v and all inner neighbors of v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The w...
OF THE DISSERTATION Applications and Variations of Domination in Graphs by Paul Andrew Dreyer, Jr. Dissertation Director: Fred S. Roberts In a graph G = (V, E), S ⊆ V is a dominating set of G if every vertex is either in S or joined by an edge to some vertex in S. Many different types of domination have been researched extensively. This dissertation explores some new variations and applications...
For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman sdominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a func...
A Roman dominating function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The minimum of f (V (G)) = ∑ v∈V f (v) over all such functions is called the Roman domination number γR(G). A 2-rainbow dominating function of a graphG is a function g that assigns to each vertex a set of colors chosen from the set {1, 2}, for each vertex v ∈ V (G) such ...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = ∑ u∈V (G) f(u). A function f : V (G) → {0, 1, 2} with the ordered partition (V0, V1, V2) of V (G), where Vi = {v ∈ V (G) | f(v) = i} for i = 0...
We investigate a domination-like problem from the exact exponential algorithms viewpoint. The classical Dominating Set problem ranges among one of the most famous and studied NP -complete covering problems [6]. In particular, the trivial enumeration algorithm of runtime O∗(2n) 4 has been improved to O∗(1.4864n) in polynomial space, and O∗(1.4689n) with exponential space [9]. Many variants of th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید