نتایج جستجو برای: seidel signless laplacian energy
تعداد نتایج: 679796 فیلتر نتایج به سال:
Let G be a graph of order n such that ∑n i=0(−1)iaiλn−i and ∑n i=0(−1)ibiλn−i are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that ai ≥ bi for i = 0,1, . . . , n. As a consequence, we prove that for any α, 0 < α ≤ 1, if q1, . . . , qn and μ1, . . . ,μn are the signless Laplacian and the Laplacian eigenvalues of G, respectively,...
This is the third part of our work with a common title. The first [11] and the second part [12] will be also referred in the sequel as Part I and Part II, respectively. This third part was not planned at the beginning, but a lot of recently published papers on the signless Laplacian eigenvalues of graphs and some observations of ours justify its preparation. By a spectral graph theory we unders...
Let qmin(G) stand for the smallest eigenvalue of the signless Laplacian of a graph G of order n: This paper gives some results on the following extremal problem: How large can qmin (G) be if G is a graph of order n; with no complete subgraph of order r + 1? It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds ...
In this paper, various modifications of a connected graph G are regarded as perturbations of its signless Laplacian matrix. Several results concerning the resulting changes to the signless Laplacian spectral radius of G are obtained by solving intermediate eigenvalue problems of the second type. AMS subject classifications: 05C50
Let G be a simple graph with adjacency matrix A (= AG). The eigenvalues and the spectrum of A are also called the eigenvalues and the spectrum of G, respectively. If we consider a matrix Q = D + A instead of A, where D is the diagonal matrix of vertex–degrees (in G), we get the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively. For short, the signless Laplacian ei...
Abstract In this paper, we give the spectrum of a matrix by using the quotient matrix, then we apply this result to various matrices associated to a graph and a digraph, including adjacency matrix, (signless) Laplacian matrix, distance matrix, distance (signless) Laplacian matrix, to obtain some known and new results. Moreover, we propose some problems for further research. AMS Classification: ...
We consider the problem of determining the Q–integral graphs, i.e. the graphs with integral signless Laplacian spectrum. First, we determine some infinite series of such graphs having the other two spectra (the usual one and the Laplacian) integral. We also completely determine all (2, s)–semiregular bipartite graphs with integral signless Laplacian spectrum. Finally, we give some results conce...
For a connected graph G, we derive tight inequalities relating the smallest signless Laplacian eigenvalue to the largest normalised Laplacian eigenvalue. We investigate how vectors yielding small values of the Rayleigh quotient for the signless Laplacian matrix can be used to identify bipartite subgraphs. Our results are applied to some graphs with degree sequences approximately following a pow...
A graph is said to be determined by its signless Laplacian spectrum if there is no other non-isomorphic graph with the same spectrum. In this paper, it is shown that each starlike tree with maximum degree 4 is determined by its signless Laplacian spectrum.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید