نتایج جستجو برای: silver nanoparticle ag np
تعداد نتایج: 148921 فیلتر نتایج به سال:
The use of less hazardous chemicals or natural material in place of toxic chemical for the formation of metal nanoparticle is known as green synthesis. The present paper deals with greener approach for the synthesis of silver (Ag) nanoparticles. The Saraca asoca plant leaves extract solution was used for the silver nanoparticles. Confirmation of Ag nanoparticles has been done using var...
in this work, we report synthesis of silver nanoplates by a simple reduction process of silver nitrate in the presence of polyvinyl alcohol (pva) and n,n'-dimethyl formamide (dmf). the characterization of the samples were carried out using x-ray diffraction (xrd), transmission-electron microscopy (tem) and uv-vis spectroscopy. absorption spectra of the nanoplates in comparison with that of...
We demonstrate controllable fabrication of Ag nanoparticle (NP)-decorated reduced graphene oxide (RGO/Ag) hybrids and their application for fast and selective detection of ammonia at room temperature. Ag NPs greatly improved the sensitivity of RGO. The response time (6 s) and recovery time (10 s) are comparable with our previous Ag NP-decorated multiwalled carbon nanotube (MWCNT/Ag) NH3 sensors...
Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration ...
We demonstrate controllable fabrication of Ag nanoparticle (NP)-decorated reduced graphene oxide (RGO/Ag) hybrids and their application for fast and selective detection of ammonia at room temperature. Ag NPs greatly improved the sensitivity of RGO. The response time (6 s) and recovery time (10 s) are comparable with our previous Ag NP-decorated multiwalled carbon nanotube (MWCNT/Ag) NH3 sensors...
Single crystalline silver nanoparticles have been synthesized by thermal decomposition of silver oxalate in water and in ethylene glycol. Polyvinyl alcohol (PVA) was employed as a capping agent. The particles were spherical in shape with size below 10 nm. The chemical reduction of silver oxalate by PVA was also observed. Increase of the polymer concentration led to a decrease in the size of Ag ...
Ethylenediamine-modified β-cyclodextrin (Et-β-CD) was immobilized on aggregated silver nanoparticle (NP)-embedded silica NPs (SiO₂@Ag@Et-β-CD NPs) for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS) signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via hos...
Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...
The use of less hazardous chemicals or natural material in place of toxic chemical for the formation of metal nanoparticle is known as green synthesis. The present paper deals with greener approach for the synthesis of silver (Ag) nanoparticles. The Saraca asoca plant leaves extract solution was used for the silver nanoparticles. Confirmation of Ag nanoparticles has been done using var...
Silver-Polyaniline (Ag-PANI) nanocomposites were prepared by in-situ oxidative polymerization of aniline monomer in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) solution as an emulsifier. The synthesis of Silver-Polyaniline nanocomposites was investigated as a function of several parameters such as aniline concentration, concentration of emulsifier (AOT), concentration of oxidation agent and c...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید