نتایج جستجو برای: simultaneous quantile regression
تعداد نتایج: 432524 فیلتر نتایج به سال:
Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inh...
Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable...
This study proposes a new use of goal programming for empirically estimating a regression quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not only non-Gaussian error distribut.ions but also a small sample size t.han conventional regression quantile methods. The performance of regression quantile estimates is compared with least absolute value...
Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable...
Quantiles play an essential role in modern statistics, as emphasized by the fundamental work of Parzen (1978) and Tukey (1977). Quantile regression was introduced by Koenker and Bassett (1978) as a complement to least squares estimation (LSE) or maximum likelihood estimation (MLE) and leads to far-reaching extensions of ”classical” regression analysis by estimating families of conditional quant...
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
The finite sample distributions of the regression quantile and of the extreme regression quantile are derived for a broad class of distributions of the model errors, even for the non-i.i.d case. The distributions are analogous to the corresponding distributions in the location model; this again confirms that the regression quantile is a straightforward extension of the sample quantile. As an ap...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید