Let k ≥ 2 be an integer. For fixed N , we consider a set A of non-negative integers such that for all integer n ≤ N , n can be written as n = a + b, a ∈ A , b a positive integer. We are interested in a lower bound for the number of elements of A . Improving a result of Balasubramanian [1], we prove the following theorem: Theorem 1. |AN | ≥ N1− 1 k { 1 Γ(2− 1 k )Γ(1 + 1 k ) + o(1) } . 1. STATMEN...