The basic purpose of this article is to prove the important Weier-strass' theorem which states that a real valued continuous function f on a topological space T assumes a maximum and a minimum value on the compact subset S of T , i.e., there exist points x1, x2 of T being elements of S, such that f(x1) and f(x2) are the supremum and the innmum, respectively, of f(S), which is the image of S und...