نتایج جستجو برای: weka

تعداد نتایج: 974  

2013
Sunila Godara Ritu Yadav

Clustering is an unsupervised classification that is the partitioning of a data set in a set of meaningful subsets. Each object in dataset shares some common propertyoften proximity according to some defined distance measure. Among various types of clustering techniques, K-Means, Hierarchical and Make Density Based clustering are the most popular algorithms. Clustering Techniques are very usefu...

2015
Ivan Lukovic

In these days WEKA has become one of the most important data mining and machine learning tools. Despite the fact that it incorporates many algorithms, on the classification area there are still some unimplemented features. In this paper we cover some of the missing features that may be useful to researchers and developers when working with decision tree classifiers. The rest of the paper presen...

2014
Yinghua Lu Tinghuai Ma Changhong Yin Xiaoyu Xie Wei Tian ShuiMing Zhong

An improved fuzzy c-means algorithm is put forward and applied to deal with meteorological data on top of the traditional fuzzy c-means algorithm. The proposed algorithm improves the classical fuzzy c-means algorithm (FCM) by adopting a novel strategy for selecting the initial cluster centers, to solve the problem that the traditional fuzzy c-means (FCM) clustering algorithm has difficulty in s...

2015
Betül Yazici Fethiye Yasli Hande Yildiz Gürleyik Umut Orçun Turgut Mehmet S. Aktas Oya Kalipsiz

Özet. Günümüzde pek çok kurum mevcut verilerini ilişkisel veri tabanlarında saklamakta ve modellemelerini bu verileri kullanarak gerçekleştirmektedir. Kurumsal veri modellerinin karmaşıklığı, veriye ait özelliklerin çokluğu ve veri miktarının fazlalığı, veri üzerinde her türlü analizin (kümeleme, regresyon, vb.) yapılmasını zorlaştırmaktadır. Bu nedenle veri kümeleri üzerinde tahmin gücü yüksek...

2015
Paul-Stefan Popescu Mihai Mocanu Marian Cristian Mihaescu

In these days WEKA has become one of the most important data mining and machine learning tools. Despite the fact that it incorporates many algorithms, on the classification area there are still some unimplemented features. In this paper we cover some of the missing features that may be useful to researchers and developers when working with decision tree classifiers. The rest of the paper presen...

2014
Divya Jain

This paper presents the implementation on a healthcare dataset using data mining tools to find important parameters that reflect the effect of diabetes on kidney of patients. This is done with the use of Kidney Function Tests (KFT). The data mining tools used are Tanagra and Weka with the application of C4.5 Algorithm which is based on decision trees. This paper compares the result given by Wek...

Journal: :Computational Statistics 2008

Journal: :مجلة الجمعیة المصریة لنظم المعلومات وتکنولوجیا الحاسبات 2017

Journal: :Zeitschrift für Untersuchung der Lebensmittel 1937

1996
Geoffrey Holmes Andrew Donkin Ian H. Witten

WEKA is a workbench for machine learning that is intended to aid in the application of machine learning techniques to a variety of real-world problems, in particular, those arising from agricultural and horticultural domains. Unlike other machine learning projects, the emphasis is on providing a working environment for the domain specialist rather than the machine learning expert. Lessons learn...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید