نتایج جستجو برای: zariski socle
تعداد نتایج: 1358 فیلتر نتایج به سال:
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
This paper concentrates on understanding the first order theory of universal specializations of Zariski structures. Models of the theory are pairs, a Zariski structure and an elementary extension with a map (specialization) from the extension to the structure that preserves positive quantifier free formulas. The reader will find that this context generalizes both the study of algebraically clos...
For any reduced commutative $f$-ring with identity and bounded inversion, we show that a condition which is obviously necessary for the socle of the ring to coincide with the socle of its bounded part, is actually also sufficient. The condition is that every minimal ideal of the ring consist entirely of bounded elements. It is not too stringent, and is satisfied, for instance, by rings of ...
We discuss analogs of Faber’s conjecture for two nested sequences of partial compactifications of the moduli space of smooth curves. We show that their tautological rings are one-dimensional in top degree but do not satisfy Poincaré duality. The structure of the tautological ring of the moduli space of stable curves is predicted by the Faber conjecture, which states that R(Mg,n) is Gorenstein w...
We prove that the outer Lipschitz geometry of the germ of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3: Zariski equ...
The starting point for this dissertation is whether the concept of Zariski geometry, introduced by Hrushovski and Zilber, could be generalized to the context of nonelementary classes. This leads to the axiomatization of Zariski-like structures. As our main result, we prove that if the canonical pregeometry of a Zariski-like structure is non locally modular, then the structure interprets either ...
Let k be an algebraically closed field andK be a finitely generated k-field. In the first half of the 20-th century, Zariski defined a Riemann variety RZK(k) associated to K as the projective limit of all projective k-models of K. Zariski showed that this topological space, which is now called a Riemann-Zariski (or Zariski-Riemann) space, possesses the following set-theoretic description: to gi...
1 Algebraic sets, affine varieties, and the Zariski topology 4 1.1 Algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Hilbert basis theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Proof that affine algebraic sets form closed sets on a t...
Based on a recent work of Thomas Bauer’s [1] reproving the existence of Zariski decompositions for surfaces, we construct a b-divisorial analogue of Zariski decomposition in all dimensions.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید