نتایج جستجو برای: α fe2o3
تعداد نتایج: 167862 فیلتر نتایج به سال:
A facile and economic route has been presented for mass production of micro/nanostructured hematite microcrystals based on the wet chemical controllable method. The as-prepared samples were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV-Vis absorption spectroscopy. The results showed that the product was mesoporous α -Fe2O3 and near...
We report studies of exchange bias and coercivity in ferromagnetic Ni81Fe19 layers coupled to antiferromagnetic (AF) (0001), (112̄0), and (110̄2) α-Fe2O3 layers. We show that AF spin configurations which permit spin-flop coupling give rise to a strong uniaxial anisotropy and hence a large coercivity, and that by annealing in magnetic fields parallel to specific directions in the AF we can control...
Metal/metal-oxide interfaces appear in a wide variety of disciplines including electronics, corrosion, electrochemistry, and catalysis. Specifically, covering a metal-oxide with a metal is often thought to enhance solar energy absorption and to improve photocatalytic activity. For example, the platinum/hematite (Pt/α-Fe2O3) interface has demonstrated improved functionality. In order to advance ...
While preparation of metal oxide from metal organic frameworks (MOFs) has been widely studied, crystal growth via thermal decomposition of MOFs in a confined space is rarely investigated. We demonstrate a confinement effect on the crystal growth via pyrolysis of MOFs at high temperature. Iron containing MOF (Fe-MIL-88A) was calcined inside a SiO2. The crystalline phase, particle size, morpholog...
Hematite (α-Fe2O3) nanoparticles were synthesized by the solid transformation of ferrous hydroxide and ferrihydrite in hydrothermal condition. The as-prepared α-Fe2O3 nanoparticles were characterized by UV-vis, PL, XRD, Raman, TEM, AFM, FESEM, and EDX analysis. The experimental results indicated the formation of uniform hematite nanoparticles with an average size of 45 nm and perfect crystallin...
The photoelectrochemical (PEC) water splitting is hampered by strong bonds of H2O molecules and low ionic conductivity of pure water. The photocatalysts dispersed in pure water can serve as a water activation agent, which provides an alternative pathway to overcome such limitations. Here we report that the light illuminated α-Fe2O3/Pt nanoparticles may produce a reservoir of reactive intermedia...
For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn(4+) and Be(2+) dopants into hematite (α-Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm(2)) compared to pristine α-Fe2O3 (0.7 mA/cm(2)), and Sn(4+) mono-doped α-Fe2O3 photoanodes (1.0 ...
The existing forms of Fe are of great interest since they have a profound effect on the biological availability of Fe. In this work, aerosol samples collected in different seasons and at different locations in the Qingdao region were examined by means of extended X-ray absorption fine structure (EXAFS) K-edge analysis of Fe, X-ray diffraction (XRD) and Fe content analysis. The results showed th...
We reported a facile adjusted method for the synthesis of high surface area nanorod hematite film as a photoanode for application in water splitting. Crystalline hematite nanorods (EG-α-Fe2O3) are fabricated by electrodeposition in Fe(2+) precursor solution with the addition of ethylene glycol (EG) and followed by annealing at 450 °C. The nanorod hematite film fabricated by the modified electro...
Intrinsic doping of hematite through the inclusion of oxygen vacancies (VO) is being increasingly explored as a simple, low temperature route to preparing active water splitting α-Fe2O3-x photoelectrodes. Whilst it is widely accepted that the introduction of VO leads to improved conductivities, little else is verified regarding the actual mechanism of enhancement. Here we employ transient absor...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید