نتایج جستجو برای: قضیه کیلی همیلتون
تعداد نتایج: 3613 فیلتر نتایج به سال:
طیف گراف های کیلیِ ساخته شده از گروه های دوری و گروه های دو وجهی محاسبه و ارتباط گراف های یک ریخت را بررسی شده است. شرایط جدیدی (برای گروه های دوری) بیان تا دو گراف هم طیف، در حد یک ریختی یکدیگر را توصیف کنند. همچنین رده ای جدید از گراف های کیلیِ هم طیف و نایک ریخت، برای گروه های دوریِ مرتبه 2^{r}p برای عدد صحیحr>= 2 و عدد اول p ارائه داده شده است. با استفاده از سرشت های تحویل ناپذیر گرو...
نظریه مجموعه های راف در سال $1982$ توسط پاولاک ltrfootnote{pawlak} معرفی شد cite{pawlak}. تاکنون انواع مختلفی از تعمیم های مجموعه های راف از جمله مجموعه های تعریف پذیر خارجی ارائه شده است cite{chem}. اخیرا نوع جدیدی از مجموعه های راف تعمیم یافته به نام مجموعه های تعریف پذیر شبه خارجی معرفی و برخی از ویژگی های مهم آنها بررسی شده است cite{chem,jinjin li}. همچنین با استفاده از تقریب های...
فرض می کنیم g یگ گروه نابدیهی، s=s^(-1)={s^(-1) |s?s} و 1?s?g. گراف کیلی g که آن را به صورت cay(s:g) نمایش می دهیم ، یک گراف با مجموعه رئوس g است که در آن دو رأس a و b مجاور هستند هرگاه ab^(-1)?s. یک گراف صحیح است، اگر مقادیر ویژه مجاورت آن صحیح باشند. فرض کنید g گروهی متناهی و g ? مجموعه تمام سرشت های نمایش های g روی اعداد مختلط باشد. برای هر a?g ، ??g ? و( ?(a)=?_(a?a)?(a، مجموعه a را صحیح م...
در این پایان نامه از روش شمارشی پولیا برای شمردن تمامی گرافهای کیلی غیریکریخت که از یک گروه ساخته شده انداستفاده میشود.
تمرکز مقاله بر بیان اثبات های متعدد قضیه مشهور پروانه در هندسه اقلیدسی است.
فرض کنید ? یک گراف بامجموعه رئوس v(?)= {v1 , …vn} و مجموعه یال ها ی e(?) = {e1 , …,en} باشد. ماتریس مجاورت گراف? که با a= [aij] نمایش داده می شود،ماتریس n×n است که در آن aij = 1 اگر vi به vj مجاور باشد درغیراین صورت aij=0 . چندجمله ای det(??-a)= (?)? راچندجمله ای مشخصه گراف ? می نامیم. ریشه های (?)? به همراه تکرر طیف ? نامیده می شوند. بوضوح چون ضرایب چندجمله ای مشخصه اعدادی صحیح هستندنتیجه می ش...
در این پایان نامه یک شرط لازم و کافی برای این که گراف کیلی و مکمل ان رامانوجان شود ارائه می کنیم .همچنین انرژی گراف یالی از گراف کیلی را بررسی می کنیم.
در سال های اخیر گراف های بسیاری به ساختارهای جبری مثل گروه، حلقه، نیم گروه و مجموعه های مرتب جزیی نسبت داده شده اند. یکی از این گراف ها که اولین بار توسط بک در سال 1988 معرفی شد گراف مقسوم علیه صفر بود. در سال 2009، این مفهوم بر روی مجموعه های مرتب جزئی برده شد. از انواع دیگر و با سابقه ای طولانی در گراف های جبری، گراف های کیلی را می توان نام برد که توسط کیلی در سال 1878 به ساختار گروه ...
فرض کنید گروهg گروهی متناهی بوده وs یک مجموعه مولد برای گروهg باشد. رئوس گراف کیلی =cay(g,s)? همان عناصرg هستند. دوری که شامل همه رئوس? است را دور همیلتونی? می نامند. در اوایل سال 1970 حدس زده بودند که هر گراف کیلی همبند یک دور همیلتونی دارد، اما هیچ راه حلی جهت حل این مشکل ارائه نگردید. یکی از اهداف این پایان نامه، ارائه برخی از شواهد برای اثبات این حدس است.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید