Let $b_{\ell;3}(n)$ denote the number of $\ell$-regular partitions $n$ in 3 colours. In this paper, we find some general generating functions and new infinite families congruences modulo arbitrary powers $3$ when $\ell\in\{9,27\}$. For instance, for positive integers $k$, have\begin{align*}b_{9;3}\left(3^k\cdot n+3^k-1\right)&\equiv0~\left(\mathrm{mod}~3^{2k}\right),\\b_{27;3}\left(3^{2k+3}...