نتایج جستجو برای: acyclic chromatic index
تعداد نتایج: 415987 فیلتر نتایج به سال:
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of a graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F ), is defined as the maximum a(G) over all the graphs G ∈ F . In this p...
A natural digraph analogue of the graph-theoretic concept of an ‘independent set’ is that of an ‘acyclic set’, namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets. In the spirit of a famous theorem of P. Erdős [Graph theory and probability, Canad. J. Math. 11 (1959), 34–38], it was shown prob...
We provide a characterization of several graph parameters (the acyclic chromatic number, the arrangeability, and a sequence of parameters related to the expansion of a graph) in terms of forbidden subdivisions. Let us start with several definitions. Throughout the paper, we consider only simple undirected graphs. A graph G = sdt(G) is the t-subdivision of a graph G, if G is obtained from G by r...
An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of Hamming graphs, products of complete graphs, are considered.
The r-acyclic edge chromatic number of a graph is defined to be the minimum number of colours required to produce an edge colouring of the graph such that adjacent edges receive different colours and every cycle C has at least min(|C|, r) colours. We show that (r − 2)d is asymptotically almost surely (a.a.s.) an upper bound on the r-acyclic edge chromatic number of a random d-regular graph, for...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید