نتایج جستجو برای: adaboost learning
تعداد نتایج: 601957 فیلتر نتایج به سال:
This paper presents optimized interactive content-based image retrieval framework based on AdaBoost learning method. As we know relevance feedback (RF) is online process, so we have optimized the learning process by considering the most positive image selection on each feedback iteration. To learn the system we have used AdaBoost. The main significances of our system are to address the small tr...
As seen in the bibliography, Adaptive Boosting (Adaboost) is one of the most known methods to increase the performance of an ensemble of neural networks. We introduce a new method based on Adaboost where we have applied Cross-Validation to increase the diversity of the ensemble. We have used CrossValidation over the whole learning set to generate an specific training set and validation set for ...
The use of SVM (Support Vector Machine) as component classifier in AdaBoost may seem like going against the grain of the Boosting principle since SVM is not an easy classifier to train. Moreover, Wickramaratna et al. [2001. Performance degradation in boosting. In: Proceedings of the Second International Workshop on Multiple Classifier Systems, pp. 11–21] show that AdaBoost with strong component...
RegionBoost is one of the classical examples of Boosting with dynamic weighting schemes. Apart from its demonstrated superior performance on a variety of classification problems, relatively little effort has been devoted to the detailed analysis of its convergence behavior. This paper presents some results from a preliminary attempt towards understanding the practical convergence behavior of Re...
We address the problem of multi-task learning with no label correspondence among tasks. Learning multiple related tasks simultaneously, by exploiting their shared knowledge can improve the predictive performance on every task. We develop the multi-task Adaboost environment with Multi-Task Decision Trees as weak classifiers. We first adapt the well known decision tree learning to the multi-task ...
Though AdaBoost has been widely used for feature selection and classifier learning, many of the selected features, or weak classifiers, are redundant. By incorporating mutual information into AdaBoost, we propose an improved boosting algorithm in this paper. The proposed method fully examines the redundancy between candidate classifiers and selected classifiers. The classifiers thus selected ar...
Spam detection algorithms have been developed to train in a large enough set of labeled data and predict with a high accuracy of 95% if an email is spam or not. A problem that arises in this setting is that labeling examples is a costly process. It requires humans to read them one by one and classify them. Active learning is a learning approach developed to address this problem. It learns a sma...
We have recently introduced Learn++ as an incremental learning algorithm capable of learning additional data that may later become available. The strength of Learn++ lies with its ability to learn new data without forgetting previously acquired knowledge and without requiring access to any of the previously seen data, even when the new data introduce new classes. Learn++, inspired in part by Ad...
In this paper, we evaluate the performance of machine learningbased methods for detection of phishing sites. In our previous work [1], we attempted to employ a machine learning technique to improve the detection accuracy. Our preliminary evaluation showed the AdaBoost-based detection method can achieve higher detection accuracy than the traditional detection method. Here, we evaluate the perfor...
Boosting is an approach to machine learning based on the idea of creating a highly accurate prediction rule by combining many relatively weak and inaccurate rules. The AdaBoost algorithm of Freund and Schapire was the first practical boosting algorithm, and remains one of the most widely used and studied, with applications in numerous fields. This chapter aims to review some of the many perspec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید