نتایج جستجو برای: adaptive learning rate
تعداد نتایج: 1694493 فیلتر نتایج به سال:
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
This study suggests new learning laws for Adaptive Network based Fuzzy Inference System that is structured on the basis of TSK type III as a system identifier. Stable learning algorithms for consequence parts of TSK type III rules are proposed on the basis of the Lyapunov stability theory and some constraints are obtained. Simulation results are given to validate the results. It is shown that i...
2 Related Works Gaussian mixtures are often used for data modeling in many real-time applications such as video background modeling and speaker direction tracking. The real-time and dynamic nature of these systems prevents the use of a batch EM algorithm. Currently, online learning of mixture models on dynamic data is achieved using an adaptive filter coupled with reassignment rules. However, c...
As alignment links are not given between English sentences and Abstract Meaning Representation (AMR) graphs in the AMR annotation, automatic alignment becomes indispensable for training an AMR parser. Previous studies formalize it as a string-to-string problem, and solve it in an unsupervised way. In this paper, we formalize it as a syntax-based alignment problem, and solve it in a supervised m...
Artificial intelligence (AI) is achieved by optimizing the cost function constructed from learning data. Changing parameters in an AI process (or for convenience). If well performed, then value of global minimum. In order to obtain well-learned learning, parameter should be no change at One useful optimization method momentum method; however, has difficulty stopping when satisfies minimum (non-...
Learning rates in gradient descent algorithms have significant effects especially on the accuracy of a Capsule Neural Network (CNN). Choosing an appropriate learning rate is still issue to date. Many developers problem selecting for CNN leading low accuracies classification. This gap motivated this study assess effect developed There are no predefined and therefore it hard researchers know what...
Parameter-specific adaptive learning rate methods are computationally efficient ways to reduce the ill-conditioning problems encountered when training large deep networks. Following recent work that strongly suggests that most of the critical points encountered when training such networks are saddle points, we find how considering the presence of negative eigenvalues of the Hessian could help u...
Hebbian associative learning is a common form of neuronal adaptation in the brain and is important for many physiological functions such as motor learning, classical conditioning and operant conditioning. Here we show that a Hebbian associative learning synapse is an ideal neuronal substrate for the simultaneous implementation of high-gain adaptive control (HGAC) and model-reference adaptive co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید