نتایج جستجو برای: algebra homomorphism
تعداد نتایج: 72400 فیلتر نتایج به سال:
To any finite group Γ ⊂ Sp(V ) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ, of the algebra C[V ]#Γ, smash product of Γ with the polynomial algebra on V . The parameter κ runs over points of CP, where r =number of conjugacy classes of symplectic reflections in Γ. The algebra Hκ, called a symplectic reflection algebra, is related to the coord...
To any finite group Γ ⊂ Sp(V ) of automorphisms of a symplectic vector space V we associate a new multi-parameter deformation, Hκ, of the algebra C[V ]#Γ, smash product of Γ with the polynomial algebra on V . The parameter κ runs over points of CP , where r =number of conjugacy classes of symplectic reflections in Γ. The algebra Hκ, called a symplectic reflection algebra, is expected to be rela...
Let $A$ be an arbitrary Banach algebra and $varphi$ a homomorphism from $A$ onto $Bbb C$. Our first purpose in this paper is to give some equivalent conditions under which guarantees a $varphi$-mean of norm one. Then we find some conditions under which there exists a $varphi$-mean in the weak$^*$ cluster of ${ain A; |a|=varphi(a)=1}$ in $A^{**}$.
Usually we shall just call A an algebra if the field k is clear from the context. The algebra A is associative if multiplication is associative i.e. for all a, b, c ∈ A, (ab)c = a(bc), and unital if there is a multiplicative identity, i.e. an element usually denoted by 1 such that, for all a ∈ A, 1a = a1 = a. Note that, in this case, 1 = 0 ⇐⇒ A = {0}. Otherwise, the map k → A defined by t 7→ t·...
Generalizing the notion of character amenability for Banach algebras, we study the concept of $varphi$-Connes amenability of a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$, where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$ that lies in $mathcal{A}_*$. Several characterizations of $varphi$-Connes amenability are given. We also prove that the follo...
In this paper we introduce a notion of vertex Lie algebra U , in a way a “half” of vertex algebra structure sufficient to construct the corresponding local Lie algebra L(U) and a vertex algebra V(U). We show that we may consider U as a subset U ⊂ V(U) which generates V(U) and that the vertex Lie algebra structure on U is induced by the vertex algebra structure on V(U). Moreover, for any vertex ...
A Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple.
A depth two extension A | B is shown to be weak depth two over its double centralizer V A (V A (B)) if this is separable over B. We introduce a notion of codepth two coalgebra homomorphism g : C → D, dual to a depth two algebra homomorphism. It is shown that the endomorphism ring of bicomodule endomorphisms End D C D forms a right bialgebroid over the centralizer subalgebra g * : D * → C * of t...
The algebra Sn of one-sided inverses of a polynomial algebra Pn in n variables is obtained from Pn by adding commuting, left (but not two-sided) inverses of the canonical generators of the algebra Pn. Ignoring non-Noetherian property, the algebra Sn belongs to a family of algebras like the nth Weyl algebra An and the polynomial algebra P2n. Explicit generators are found for the group Gn of auto...
The concept of abstract algebra on intuitionistic fuzzy sets were introduced and some basic theorems proved by authors in 2017. In this study, homomorphism between algebras is defined, function examined then congruence relations are defined algebra. First third isomorphism introduced.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید