نتایج جستجو برای: anfis adaptive neuro
تعداد نتایج: 216685 فیلتر نتایج به سال:
This paper deals with the implementation of the Adaptive neuro fuzzy inference system (ANFIS) on a Xilinx based Field Programmable Gate Array Spartan-3E. The implemented hardware is then used to efficiently calibrate the U-Tube manometer, in which the relation between the level of mercury and the Capacitance developed across the Copper Plates of the manometer is highly non-linear. This system s...
In this work a new method based on the adaptive neuro-fuzzy inference system (ANFIS) was successfully introduced to determine the characteristic parameters, effective permittivities and characteristic impedances, of conventional coplanar waveguides. The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of neural networks. A hybrid-learning algorithm,...
This paper proposes the implementation of a very simple but efficient Adaptive Neuro-Fuzzy Inference System ( ANFIS )based algorithm to detect the edges of an gray scale image. The proposed approach begins by scanning the images using floating 3x3 pixel window. ANFIS system designed has 8 inputs, which corresponds to 8 pixels of instantaneous scanning matrix, one output that tells whether the p...
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ...
Weather prediction is an ever challenging area of investigation for scientists. The Adaptive Neuro-Fuzzy Inference System (ANFIS) has been widely used for modeling different kinds of nonlinear systems including rainfall forecasting. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) combines the capabilities of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) to solve different ki...
The aim of this work is to optimise the vibration of the plate with the help of Adaptive neuro-fuzzy inference system (ANFIS) controller. The contribution of piezoelectric sensor and actuator layers on the mass and stiffness of the plate is considered. As the plate is square so we get total 64 squares. To validate the present code, frequency response has been compared with exact solution as wel...
To accurately estimate the state of charge of a lithium-ion battery pack used in electric vehicles, a neurofuzzy system is proposed. The subtractive clustering is used to determine the structure and the initial parameters of the neuro-fuzzy system to reduce heuristic errors. The algorithm of adaptive neuro-fuzzy inference (ANFIS) is adopted to optimize the parameters of the neuro-fuzzy system. ...
this study investigates the prediction model of compressive strength of self–compacting concrete (scc) by utilizing soft computing techniques. the techniques consist of adaptive neuro–based fuzzy inference system (anfis), artificial neural network (ann) and the hybrid of particle swarm optimization with passive congregation (psopc) and anfis called psopc–anfis. their performances are comparativ...
In this paper, an attempt has been made to design an computational intelligence technique based expert system using Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting surface roughness in end milling of Inconel 718. Two different types of membership functions are adopted for analysis in ANFIS training and compared their differences regarding the accuracy rate of the surface roughness ...
Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Back-propagation gradient descent method was performed to train the ANFIS system. The performance of the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید