نتایج جستجو برای: arens regular banach algebra

تعداد نتایج: 203202  

2007
Matthew Daws

We investigate the Arens products on the biduals of certain algebras of operators on nonreflexive Banach spaces. To be precise, we study the α-nuclear operators, where α is a tensor norm. This includes the approximable and nuclear operators, and we use these, together with the 2-nuclear operators, as motivating examples. The structure of the two topological centres of the bidual are studied, an...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

Journal: :Mathematical Notes 2021

The relation $$xy-yx=h(y)$$ , where $$h$$ is a holomorphic function, occurs naturally in the definitions of some quantum groups. To attach rigorous meaning to right-hand side this equality, we assume that $$x$$ and $$y$$ are elements Banach algebra (or an Arens–Michael algebra). We prove universal generated by commutation kind can be represented explicitly as analytic Ore extension. An analysis...

2001
Robin Harte

Robin Harte Dedicated to Goldie Hawn, on her birthday Abstract We attempt to deconstruct the Arens-Royden Theorem. Suppose A is a Banach algebra (by default complex, with identity 1): we shall write 0.1 A−1 = {a ∈ A : 1 ∈ Aa∩aA} for the open subgroup of invertible elements, and A−1 0 for the connected component of the identity in A −1: it turns out ([8], [11] Theorem 7.11.4) that 0.2 A−1 0 = Ex...

Journal: :bulletin of the iranian mathematical society 2012
j. laali m. ettefagh

let $fm(x)$ be the  space of  all finite regular borel measures on $x$. a general measure algebra is a subspace  of$fm(x)$,which is an $l$-space and has a multiplication preserving the probability measures. let $clsubseteqfm(x)$ be a general measure algebra on a locallycompact space $x$. in this paper, we investigate the relation between arensregularity of $cl$ and the topology of $x$. we  find...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1376

in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...

Journal: :journal of linear and topological algebra (jlta) 0
d ebrahimi baghaa department of mathematics, faculty of science, islamic azad university, centeral tehran branch, p. o. box 13185/768, tehran, iran.

let a be a banach algebra and e be a banach a-bimodule then s = a  e, the l1-direct sum of a and e becomes a module extension banach algebra when equipped with the algebras product (a; x):(a′; x′) = (aa′; a:x′ + x:a′). in this paper, we investigate △-amenability for these banach algebras and we show that for discrete inverse semigroup s with the set of idempotents es, the module extension bana...

For two algebras $A$ and $B$, a linear map $T:A longrightarrow B$ is called separating, if $xcdot y=0$ implies $Txcdot Ty=0$ for all $x,yin A$. The general form and the automatic continuity of separating maps between various Banach algebras have been studied extensively. In this paper, we first extend the notion of separating map for module case and then we give a description of a linear se...

2010
PAK-KEN WONG

In this paper, we study several problems in Banach algebras concerned with the Arens products.

Journal: :bulletin of the iranian mathematical society 2011
a. medghalchi h. pourmahmood-aghababa

let $a$ be a banach algebra and $x$ be a banach $a$-bimodule. then ${mathcal{s}}=a oplus x$, the $l^1$-direct sum of $a$ and $x$ becomes a module extension banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ in this paper, we investigate biflatness and biprojectivity for these banach algebras. we also discuss on automatic continuity of derivations on ${mathcal{s...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید