نتایج جستجو برای: baer modules
تعداد نتایج: 58792 فیلتر نتایج به سال:
It is shown that the Baer–Kaplansky Theorem can be extended to all abelian groups provided rings of endomorphisms are replaced by trusses corresponding heaps. That is, every group determined up isomorphism its endomorphism truss and between two associated some [Formula: see text] induced an element from text]. This correspondence then modules over a ring considering heaps modules. proved heap m...
This article treats the problem of deriving the reflector of a semi-abelian category A onto a Birkhoff subcategory B of A. Basing ourselves on Carrasco, Cegarra and Grandjeán’s homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization—to semi-abelian categories— of Barr and Beck’s cotriple homology theory. This results in a semi-a...
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8] called a ring R to be a right (...
an ideal i of a ring r is called right baer-ideal if there exists an idempotent e 2 r such that r(i) = er. we know that r is quasi-baer if every ideal of r is a right baer-ideal, r is n-generalized right quasi-baer if for each i e r the ideal in is right baer-ideal, and r is right principaly quasi-baer if every principal right ideal of r is a right baer-ideal. therefore the concept of baer idea...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید