نتایج جستجو برای: bf3 sio2 nps
تعداد نتایج: 25227 فیلتر نتایج به سال:
In this research, effects of SiO2 nanoparticles (NPs) on the growth, antioxidant properties, and phenolic and flavonoid contents were investigated in Anthemis gilanica plants from the Asteraceae family. Following seed germination, seedlings were cultured under Hoagland growth media and were treated with different concentrations of SiO2NPs (0, 2, 4, 6 and 8 g L-1). The results showed that SiO2 N...
Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive conden...
In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the pla...
A turn on and label-free fluorescent apasensor for Hg(2+) with high sensitivity and selectivity has been demonstrated in this report. Firstly, core-shell Ag@SiO2 nanoparticles (NPs) were synthetized as a Metal-Enhanced Fluorescent (MEF) substrate, T-rich DNA aptamers were immobilized on the surface of Ag@SiO2 NPs and thiazole orange (TO) was selected as fluorescent reporter. After Hg(2+) was ad...
The photosensitizer (PS) methylene blue (MB) is confined in the close vicinity of an Au nanorod, by incorporating it into SiO2 during Au-core/SiO2-shell nanoparticle (NP) growth. Upon light irradiation of the Au@(SiO2-MB) NPs, generation of reactive oxygen species and their transport to the cytoplasm are directly responsible for significantly decreased cell viability. We have excluded the indep...
We report a novel synthesis of Ti5Si3 nanoparticles (NPs) via the magnesio-reduction of TiO2 NPs and SiO2 in eutectic LiCl-KCl molten salts at 700 °C. The Ti5Si3 particle size (∼25 nm) is confined to the nanoscale due to the partial dissolution of Mg and silica in the molten salts and a subsequent heterogeneous reduction on the surface of the TiO2 NPs.
Supported WOx/SiO2 catalysts were investigated for propylene metathesis as a function of tungsten oxide loading and temperature. The catalysts were synthesized by incipient-wetness impregnation of an aqueous ammonium metatungstate solution onto the silica support and calcined at elevated temperatures to form the supported tungsten oxide phase. In situ Raman spectroscopy under dehydrated conditi...
Silica nanoparticles (SiO2 NPs) cause oxidative stress in respiratory system. Meanwhile, human cells launch adaptive responses to overcome SiO2 NP toxicity. However, besides a few examples, the regulation of SiO2 NP-responsive proteins and their functions in SiO2 NP response remain largely unknown. In this study, we demonstrated that SiO2 NP induced the expression of follistatin (FST), a stress...
Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si-O-Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization ...
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید