نتایج جستجو برای: bidiagonalization
تعداد نتایج: 146 فیلتر نتایج به سال:
The main purpose of this paper is to show that linear least squares methods based on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust region path. This property is a basis for an inexact trust region method which uses the LSQR algorithm for direction determination. This method is very efficient for large sparse nonlinear least squares as it is supported by numer...
We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiven...
The matrix-form LSQR method is presented in this paper for solving the least squares problem of the matrix equation AXB = C with tridiagonal matrix constraint. Based on a matrix-form bidiagonalization procedure, the least squares problem associated with the tridiagonal constrained matrix equation AXB = C reduces to a unconstrained least squares problem of linear system, which can be solved by u...
The irlba package provides a fast way to compute partial singular value decompositions (SVD) of large sparse or dense matrices. Recent additions to the package can also compute fast partial symmetric eigenvalue decompositions and principal components. The package is an R implementation of the augmented implicitly restarted Lanczos bidiagonalization algorithm of Jim Baglama and Lothar Reichel. S...
Two new algorithms for one-sided bidiagonalization are presented. The first is a block version which improves execution time by improving cache utilization from the use of BLAS 2.5 operations and more BLAS 3 operations. The second is adapted to parallel computation. When incorporated into singular value decomposition software, the second algorithm is faster than the corresponding ScaLAPACK rout...
Abstract. Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a linear regularizat...
We describe a novel method for reducing a pair of large matrices {A,B} to a pair of small matrices {H,K}. The method is an extension of Golub–Kahan bidiagonalization to matrix pairs, and simplifies to the latter method when B is the identity matrix. Applications to Tikhonov regularization of large linear discrete ill-posed problems are described. In these problems the matrix A represents a disc...
The L-curve is often applied to determine a suitable value of the regularization parameter when solving ill-conditioned linear systems of equations with a right-hand side contaminated by errors of unknown norm. The location of the vertex of the L-curve typically yields a suitable value of the regularization parameter. However, the computation of the L-curve and of its curvature is quite costly ...
We consider the solution of large linear systems of equations that arise from the discretization of ill-posed problems. The matrix has a Kronecker product structure and the right-hand side is contaminated by measurement error. Problems of this kind arise, for instance, from the discretization of Fredholm integral equations of the first kind in two space-dimensions with a separable kernel and in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید