نتایج جستجو برای: bifurcation of limit cycles

تعداد نتایج: 21180523  

2014
LINPING PENG ZHAOSHENG FENG

This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upper bound can be reached. In addition, we study a family of perturbed isochronous systems and prove th...

Journal: :I. J. Bifurcation and Chaos 2000
Ricardo López-Ruiz Jose-Luis López

Liénard systems of the form ẍ + ǫf(x)ẋ + x = 0, with f(x) an even continous function, are considered. The bifurcation curves of limit cycles are calculated exactly in the weak (ǫ → 0) and in the strongly (ǫ → ∞) nonlinear regime in some examples. The number of limit cycles does not increase when ǫ increases from zero to infinity in all the cases analyzed.

2010
Adriana Buică Jaume Llibre Rafael Ortega J. Llibre

Using Melnikov functions at any order, we provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of the degenerate center ẋ = −y((x + y)/2) and ẏ = x((x + y)/2) with m ≥ 1, when we perturb it inside the whole class of polynomial vector fields of degree n. The positive integers m and n are arbitrary. As far as we know there is only one paper that provide ...

2007
Xiao-Chun Hong Qing-Hua Qin

Bifurcation of limit cycles in a cubic Hamiltonian system with quintic perturbed terms is investigated using both qualitative analysis and numerical exploration. The investigation is based on detection functions which are particularly effective for the perturbed cubic Hamiltonian system. The study reveals firstly that there are at most 15 limit cycles in the cubic Hamiltonian system with pertur...

Journal: :I. J. Bifurcation and Chaos 2005
Arnaud Tonnelier

In a previous paper [Tonnelier, 2002] we conjectured that a Liénard system of the form ẋ = p(x) − y, ẏ = x where p is piecewise linear on n + 1 intervals has up to 2n limit cycles. We construct here a general class of functions p satisfying this conjecture. Limit cycles are obtained from the bifurcation of the linear center.

2000
Hiroyuki Kitajima Hiroshi Kawakami

| Bifurcations of equilibrium points and limit cycles in unidirectionally coupled three oscillators are studied. According to their symmetrical properties, we classify equilibrium points and limit cycles into three and eight di erent types, respectively. Possible oscillations in unidirectional coupled three oscillators are presented by calculating Hopf bifurcation sets of equilibrium points. We...

2005
S. Wang P. Yu

This paper intends to explore the bifurcation of limit cycles for planar polynomial systems with even number of degrees. To obtain the maximum number of limit cycles, a sixth-order polynomial perturbation is added to a quintic Hamiltonian system, and both local and global bifurcations are considered. By employing the detection function method for global bifurcations of limit cycles and the norm...

2014
Yanyan Cheng

We study the bifurcation of limit cycles from periodic orbits of a four-dimensional systemwhen the perturbation is piecewise linear with two switching boundaries. Our main result shows that when the parameter is sufficiently small at most, six limit cycles can bifurcate from periodic orbits in a class of asymmetric piecewise linear perturbed systems, and, at most, three limit cycles can bifurca...

2005
Mostafa Adimy Fabien Crauste Andrei Halanay Mihaela Neamtu Dumitru Opris Mihaela Neamţu Dumitru Opriş

This paper is devoted to the study of the stability of limit cycles of a nonlinear delay differential equation with a distributed delay. The equation arises from a model of population dynamics describing the evolution of a pluripotent stem cells population. We study the local asymptotic stability of the unique nontrivial equilibrium of the delay equation and we show that its stability can be lo...

2001
BASEM S. ATTILI

We consider the existence of limit cycles for a predator-prey system with a functional response. The system has two or more parameters that represent the intrinsic rate of the predator population. A necessary and sufficient condition for the uniqueness of limit cycles in this system is presented. Such result will usually lead to a bifurcation curve. 2000 Mathematics Subject Classification. 92D40.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید