نتایج جستجو برای: bootstrap aggregating

تعداد نتایج: 18325  

2000
Theodoros Evgeniou Luis Pérez-Breva Massimiliano Pontil Tomaso A. Poggio

We study the problem of learning using combinations of machines. In particular we present new theoretical bounds on the generalization performance of voting ensembles of kernel machines. Special cases considered are bagging and support vector machines. We present experimental results supporting the theoretical bounds, and describe characteristics of kernel machines ensembles suggested from the ...

2002
Ioan Buciu Constantine Kotropoulos Ioannis Pitas

In this paper we study the stability of support vector machines in face detection by decomposing their average prediction error into the bias, variance, and aggregation effect terms. Such an analysis indicates whether bagging, a method for generating multiple versions of a classifier from bootstrap samples of a training set, and combining their outcomes by majority voting, is expected to improv...

Journal: :Int. Syst. in Accounting, Finance and Management 2010
Efstathios Kirkos Charalambos Spathis Yannis Manolopoulos

Auditor appointment can be regarded as a matter of pursued audit quality and is driven by several factors. The adoption of an effective auditor procurement process increases the likelihood that a company will engage the right auditor at a fair price. In this study, three techniques derived from artifi cial intelligence (AI) are used to propose models capable of discriminating between cases wher...

Journal: :Information Fusion 2003
Jérémie François Yves Grandvalet Thierry Denoeux Jean-Michel Roger

Uncertainty representation is a major issue in pattern recognition. In many applications, the outputs of a classifier do not lead directly to a final decision, but are used in combination with other systems, or as input to an interactive decision process. In such contexts, it may be advantageous to resort to rich and flexible formalisms for representing and manipulating uncertain information. T...

Journal: :Statistical Analysis and Data Mining 2008
Shohei Hido Hisashi Kashima

Imbalanced class problems appear in many real applications of classification learning. We propose a novel sampling method to improve bagging for data sets with skewed class distributions. In our new sampling method “Roughly Balanced Bagging” (RB Bagging), the number of samples in the largest and smallest classes are different, but they are effectively balanced when averaged over all subsets, wh...

Journal: :Int. J. Computational Intelligence Systems 2014
Guangming Yang Chongshi Gu Yong Huang Kun Yang

Several potential network structures are chosen to do a large number of experimental analysis, historical data is divided into training sample and testing sample, and the corresponding neural network model is established with BP learning algorithm. After checking the testing sample, a superior network integration model which can be applied for hydraulic metal structure health grade diagnosing i...

Journal: :JNW 2013
Chunjing Xiao Yuhong Zhang Xue Zeng Yue Wu

Understanding influence plays a vital role in enhancing businesses operation and improving effect of information propagation. Therefore the user influence in social media, such as Twitter, is widely studied based on different standards, such as the number of followers, retweets and so on. However, little work considers the accurate click number of short URLs as the measurement of influence. In ...

2007
Peter Hall Xiaoyan Leng Hans-Georg Müller

Adjustment for covariates is a time-honored tool in statistical analysis and is often implemented by including the covariates that one intends to adjust as additional predictors in a model. This adjustment often does not work well when the underlying model is misspecified. We consider here the situation where we compare a response between two groups. This response may depend on a covariate for ...

2005
Hüseyin Gökhan Akçay

In this paper, experiments on various classifiers and combining these classifiers are done, reported and analyzed. Combining the classifiers means having the single classifiers support each other in making a decision, instead of having only a single classifier’s decision as the final decision. The base experiment involves, both, applying different single classifiers on a dataset and applying th...

1996
J. Ross Quinlan

Breiman's bagging and Freund and Schapire's boosting are recent methods for improving the predictive power of classiier learning systems. Both form a set of classiiers that are combined by voting, bagging by generating replicated boot-strap samples of the data, and boosting by adjusting the weights of training instances. This paper reports results of applying both techniques to a system that le...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید