نتایج جستجو برای: caputo gh derivatives
تعداد نتایج: 118014 فیلتر نتایج به سال:
in this paper, a new identification of the lagrange multipliers by means of the sumudu transform, is employed to btain a quick and accurate solution to the fractional black-scholes equation with the initial condition for a european option pricing problem. undoubtedly this model is the most well known model for pricing financial derivatives. the fractional derivatives is described in caputo sen...
This manuscript assesses a semi-analytical method in connection with new hybrid fuzzy integral transform and the Adomian decomposition via notion of fuzziness known as Elzaki (briefly, EADM). Moreover, we use aforesaid strategy to address time-fractional Fornberg–Whitham equation (FWE) under gH-differentiability by employing different initial conditions (IC). Several algebraic aspects Caputo fr...
In this study, fractional differential transform method (FDTM), which is a semi analytical-numerical technique, is used for computing the eigenelements of the Sturm-Liouville problems of fractional order. The fractional derivatives are described in the Caputo sense. Three problems are solved by the present method. The calculated results are compared closely with the results obtained by some exi...
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where RiemannLiouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions ...
In this work, we focus on the fractional versions of the well-known Kolmogorov forward equations. We consider the problem in two cases. In case 1, we apply the left Caputo fractional derivatives for α ∈ (0 , 1] and in case 2, we use the right Riemann-Liouville fractional derivatives on R+, for α ∈ (1 , +∞). The exact solutions are obtained for the both cases by Laplace transforms and stable sub...
It is well known that the complex step method is a tool that calculates derivatives by imposing a complex step in a strict sense. We extended the method by employing the fractional calculus differential operator in this paper. The fractional calculus can be taken in the sense of the Caputo operator, Riemann-Liouville operator, and so forth. Furthermore, we derived several approximations for com...
By introducing the fractional derivatives in the sense of caputo, we use the Adomian decomposition method to construct the approximate solutions for some fractional partial differential equations with time and space fractional derivatives via the time and space fractional derivatives wave equation, the time and space fractional derivatives reduced wave equation and the (1+1)-dimensional Burger’...
In this paper, we give some properties of the left and right finite Caputo derivatives. Such derivatives lead to finite Riesz type fractional derivative, which could be considered as the fractional power of the Laplacian operator modelling the dynamics of many anomalous phenomena in super-diffusive processes. Finally, the exact solutions of certain fractional diffusion partial differential equa...
The multistep differential transform method is first employed to solve a time-fractional enzyme kinetics. This enzyme-substrate reaction is formed by a system of nonlinear ordinary differential equations of fractional order. The fractional derivatives are described in the Caputo sense. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید