نتایج جستجو برای: cellular reprogramming

تعداد نتایج: 449138  

2017
Scott Ronquist Geoff Patterson Markus Brown Haiming Chen Anthony Bloch Lindsey Muir Roger Brockett Indika Rajapakse

The day we understand the time evolution of subcellular elements at a level of detail comparable to physical systems governed by Newton’s laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology, providing data-guided frameworks that allow us to develop better predictions about, and methods for, control over specific biologica...

Journal: :Indian journal of experimental biology 2011
Huseyin Sumer Jun Liu Paul J Verma

The process of 'cell reprogramming' can be achieved by somatic cell nuclear transfer, cell fusion with embryonic stem cells, exposure to stem cell extracts, or by inducing pluripotentcy mediated by defined factors giving rise to what are termed induced pluripotent stem cells. More recently, the fate of a somatic cell can be directly induced to uptake other cell fates, termed lineage-specific re...

2017
Javier A. Menendez Tomás Alarcón

The inability of adult tissues to transitorily generate cells with functional stem cell-like properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like phenomena that induce a transient acquisition of epigenetic plasticity and phenotype malleability may constitute a reparative route through which human tissues respond to injury, stress, and disease. However, tissue rejuven...

2018
Lluc Mosteiro Cristina Pantoja Alba de Martino Manuel Serrano

Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprog...

Journal: :Physical biology 2015
Imre Májer Amirhossein Hajihosseini Attila Becskei

Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a ge...

2017
Benjamin Roche Benoit Arcangioli Robert Martienssen

Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a ...

Journal: :Cell 2012
Anne B.C. Cherry George Q. Daley

Although development leads unidirectionally toward more restricted cell fates, recent work in cellular reprogramming has proven that one cellular identity can strikingly convert into another, promising countless applications in biomedical research and paving the way for modeling diseases with patient-derived stem cells. To date, there has been little discussion of which disease models are likel...

2016
Takanori Eguchi Takuo Kuboki

Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innova...

Journal: :Development 2011
Jai Prakash Richard Steven Zuryn Nadine Fischer Valeria Pavet Nadège Vaucamps Sophie Jarriault

Cells can change identity during normal development, in response to tissue damage or defined artificial treatments, or during disease processes such as cancer. Strikingly, not only the reprogramming of tissue cells to an embryonic stem cell-like state, but also the direct conversion from one cell type to another have been described. Direct cell type conversion could represent an alternative str...

2014
Sophia Kelaini Amy Cochrane Andriana Margariti

The procedure of using mature, fully differentiated cells and inducing them toward other cell types while bypassing an intermediate pluripotent state is termed direct reprogramming. Avoiding the pluripotent stage during cellular conversions can be achieved either through ectopic expression of lineage-specific factors (transdifferentiation) or a direct reprogramming process that involves partial...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید