نتایج جستجو برای: center steiner harary index
تعداد نتایج: 670387 فیلتر نتایج به سال:
The Wiener index W (G) of a connected graph G is defined as W (G) = ∑ u,v∈V (G) dG(u, v) where dG(u, v) is the distance between the vertices u and v of G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S is the minimum size of a connected subgraph of G whose vertex set is S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G) = ∑ S⊆V (G) |S|=k d(S). We establish expressi...
We introduce a modification of the Harary index where the contributions of vertex pairs are weighted by the sum of their degrees. After establishing basic mathematical properties of the new invariant, we proceed by finding the extremal graphs and investigating its behavior under several standard graph products.
the harmonic index of a connected graph $g$, denoted by $h(g)$, is defined as $h(g)=sum_{uvin e(g)}frac{2}{d_u+d_v}$ where $d_v$ is the degree of a vertex $v$ in g. in this paper, expressions for the harary indices of the join, corona product, cartesian product, composition and symmetric difference of graphs are derived.
In this paper, we present the various upper and lower bounds for the product version of reciprocal degree distance in terms of other graph inavriants. Finally, we obtain the upper bounds for the product version of reciprocal degree distance of the composition, Cartesian product and double of a graph in terms of other graph invariants including the Harary index and Zagreb indices. .
The Harary index of a graph is defined as the sum of reciprocals of distances between all pairs of vertices of the graph. In this paperweprovide anupper boundof theHarary index in terms of the vertex or edge connectivity of a graph. We characterize the unique graph with themaximumHarary index among all graphs with a given number of cut vertices or vertex connectivity or edge connectivity. In ad...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید